МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ С.А. ЕСЕНИНА»

Утверждаю: Декан факультета экономики

В.С. Отто

«30» августа 2019 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Математика»

Уровень основной профессиональной образовательной программы: **бакалавриат**

Направление подготовки: 38.03.01 Экономика

Направленность (профиль): Бухгалтерский учет, анализ и аудит

Форма обучения: заочная

Срок освоения ОПОП: нормативный – 4 года 6 мес.

Факультет: экономики

Кафедра: математики и методики преподавания математических дисциплин

ВВОДНАЯ ЧАСТЬ

1. Цели освоения учебной дисциплины

Целями освоения учебной дисциплины «Математика» являются:

- Формирование общепрофессиональных (ОПК) компетенций, в соответствии и с требованиями ФГОС ВО.
- Формирование математической культуры студентов.
- Овладение классическим математическим аппаратом для дальнейшего использования в других областях экономического знания и будущей профессиональной деятельности.
- Обеспечение качественной подготовки квалифицированных конкурентоспособных специалистов.

Задачами освоения учебной дисциплины «Математика» являются:

- Изучение всех дидактических единиц дисциплины.
- Формирование навыков анализа, синтеза, вычислений на основе содержательной части дисциплины.
- Ознакомление студентов с классическими экономико-математическими моделями.

2. Место дисциплины в структуре ОПОП магистратуры.

- 2.1. **Дисциплина «Математика»** относится к базовой части Блока 1. Освоение этой дисциплины необходимо бакалаврам как будущим специалистам в области экономики.
- 2.2. Для изучения учебной дисциплины необходимы знания, умения и навыки в пределах школьной программы по математике, алгебре и началам анализа, геометрии и элементам теории вероятностей.
- 2.3. Перечень последующих учебных дисциплин, для которых необходимы знания, умения, навыки, формируемые данной учебной дисциплиной:
 - Эконометрика;
 - Статистика;
 - Принятие экономических решений.

2.4. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих общепрофессиональных (ОПК) компетенций:

No	Номер /		В резуль	тате изучения учебной дисциплины об	учающиеся должны
п/п	индекс компетенции	Содержание компетенции	Знать	Уметь	Владеть
1.	ОПК-3	способность выбирать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы	1) основные понятия математики, 2) алгоритмы решения стандартных задач, 3) методы математической обработки данных	1) выбирать методы расчетов в соответствии с поставленной задачей, 2) выбирать инструментальные средства обработки экономических данных в соответствии с поставленной задачей 3) интерпретировать и анализировать полученный математический результат	1) навыками классических математических расчётов, 2) навыками статистической обработки данных, 3) навыками построения логически обоснованных рассуждений

2.5. Карта компетенций дисциплины

КАРТА КОМПЕТЕНЦИЙ ДИСЦИПЛИНЫ

НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ: «МАТЕМАТИКА»

Цель дисциплины

- Формирование общепрофессиональных (ОПК) компетенций, в соответствии и с требованиями ФГОС ВО.
- Формирование математической культуры студентов.
- Овладение классическим математическим аппаратом для дальнейшего использования в других областях экономического знания и будущей профессиональной деятельности.
- Обеспечение качественной подготовки квалифицированных конкурентоспособных специалистов.

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие

Общепрофессиональные компетенции:

КОМПЕТ	ГЕНЦИИ		Тоумо дорим	Форма		
индекс	ФОРМУЛИРОВКА	Перечень компонентов	Технологии формирования	оценочного средства	Уровни освоения компетенций	
ОПК-3	способность выбирать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы	Знать: 1) основные понятия математики, 2) алгоритмы решения стандартных задач, 2) методы математической обработки данных Уметь: 1) выбирать методы расчетов в соответствии с поставленной задачей, 2) выбирать инструментальные средства обработки экономических данных в соответствии с поставленной задачей 3) интерпретировать и анализировать полученный математический результат Владеть: 1) навыками классических математических расчётов, 2) навыками статистической обработки данных, 3) навыками построения логически обоснованных рассуждений	Лекции, лабораторные работы, самостоятельная работа	Зачёт, контрольная работа, экзамен.	ПОРОГОВЫЙ Знает основные понятия математики, алгоритмы решения стандартных задач, методы математической обработки данных Умеет решить поставленную задачу указанным инструментальным средством обработки данных ПОВЫШЕННЫЙ Дополнительно к пороговому уровню умеет самостоятельно выбрать инструментальные средства обработки экономических данных в соответствии с поставленной задачей, проанализировать полученный результат	

ОСНОВНАЯ ЧАСТЬ

1. Объем учебной дисциплины и виды учебной работы

	D	Семестры					
Вид учебной работн	Всего	1y	13	1л	23		
			часов	часов	часов	часов	часов
1. Контактная работа обу	/чающ	ихся с	62	10	20	30	2
преподавателем (по видам учебни	ых зан	ятий)					
(всего)							
В том числе:							
Лекции (Л)			22	10	-	10	2
Практические занятия (ПЗ), семи	нары ((C)	-	-	-	-	-
Лабораторные работы (ЛР)			40	-	20	20	-
2.Самостоятельная работа студен	та (все	его)	245	62	84	74	25
В том числе							
СРС в семестре							
Vymoopog nobogo		ΚП	-	-	-	-	-
Курсовая работа		КР	-	-	-	-	-
Другие виды СРС							
Работа со справочными материал	ами		88	30	40	18	
Изучение и конспектирование ли	терату	ры	132	32	44	44	12
Подготовка контрольной работы			25			12	13
СРС в период сессии							
Вид промежуточной	вачет (3)	8	-	4	4	-
аттестации	экзаме	н (Э)	9	-	-	-	9
				·	·		·
ИТОГО: общая трудоемкость		часов	324	72	108	108	36
гтото. оощая грудосикость		зач. ед.	9	2	3	3	1

2. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Содержание разделов учебной дисциплины

	٠٠٦٠	311W11110 PW3A00102	у теонон диецинины
№ семестра	№ разде ла	Наименование раздела учебной дисциплины	Содержание раздела в дидактических единицах
1y	1	Линейная алгебра	1.1. Матрицы и определители
			Понятие матрицы, виды матриц, операции над
			матрицами и их основные свойства (сумма,
			разность, транспонирование, умножение на число,
			умножение матриц). Определители и их основные
			свойства. Алгебраические дополнения, миноры.
			Обратная матрица и ее вычисление. Понятие о ранге
			матрицы. Понятие комплексного числа.
			Собственные значения и собственные векторы
			матриц.
			1.2. Системы линейных алгебраических уравнений
			и методы их решения
			Запись системы линейных алгебраических

		Γ	
			уравнений в матричной форме. Понятие об
			основной и расширенной матрице системы. Метод
			обратной матрицы, формулы Крамера, алгоритм
			Гаусса. Использование матриц и систем линейных
			алгебраических уравнений в экономических
			расчетах.
			1.3. Векторы
			Векторы в -мерном пространстве. Координаты
			вектора, модуль вектора, операции над векторами и
			их свойства (сумма, разность, умножение на число,
			скалярное произведение, векторное произведение в
			трехмерном пространстве). Понятие векторного
			пространства. Понятие о линейно независимых и
			линейно зависимых векторах, базисе и ранге
			системы векторов, размерности векторного
			пространства. Понятие о разложении вектора по
			векторам базиса.
			1.4. Элементы аналитической геометрии
			Уравнение прямой на плоскости, различные формы
			записи. Уравнения прямой и плоскости в
			пространстве, различные формы записи. Понятие
			аффинного пространства. Понятие о кривых и
			поверхностях второго порядка.
			1.5. Экономические приложения линейной алгебры
			Модель В. Леонтьева многоотраслевой экономики
			(статическая модель межотраслевого баланса).
			Линейная модель обмена (модель международной
			торговли Д. Рикардо).
1з,1л	2	Математический	2.1. Элементы введения в математический анализ
		анализ	Вещественные числа и их свойства.
			Последовательность и ее предел. Задача о
			начислении сложных процентов и ее применение
			при оценке эффективности депозитов и финансовых
			рент. Функции и их свойства. Предел функции.
			Непрерывность функции. Понятие о точках разрыва.
			Элементарные функции. Функции в экономике
			(кривые «спрос-предложение», кривые «доход-
			потребление», кривые «цена-потребление»,
			производственные функции, функция прибыли,
			функция издержек).
			2.2. Элементы дифференциального исчисления
			функции одной переменной
			Производная и ее экономический смысл. Основные
			правила дифференцирования. Производные сложной
			и обратной функции. Таблица производных.
			Производные высших порядков. Понятие
1			дифференциала. Дифференциалы высших порядков.
			Основные теоремы дифференциального исчисления
			и их экономическая интерпретация. Понятие
			и их экономическая интерпретация. Понятие экстремума, понятие выпуклости и вогнутости.
			и их экономическая интерпретация. Понятие

			4 4
			вогнутости. Асимптоты к графику функции.
			Применение производной к исследованию функций
			и решению экономических задач. Анализ
			предельных величин в экономике. Коэффициенты
			эластичности. Закон убывающей эффективности
			производства. Модели поведения фирмы в условиях
			совершенной и несовершенной конкуренции.
			Однофакторная модель оптимизации ставки налога
			на прибыль.
			2.3. Элементы интегрального исчисления
			функции одной переменной
			Понятие первообразной и неопределенного
			интеграла. Свойства неопределенного интеграла.
			Таблица первообразных основных элементарных
			функций. Методы интегрирования (интегрирование
			по частям, метод замены переменной,
			интегрирование простейших рациональных дробей,
			интегрирование некоторых иррациональных и
			тригонометрических функций). альное исчисление.
			Обыкновенные дифференциальные уравнения.
			Экономические приложения математического
			анализа.
1л,2з	3	Теория	3.1. Случайные события
		вероятностей	Элементы комбинаторики. Случайное событие,
			вероятность (классическое и аксиоматическое
			определения), геометрическое определение
			вероятности. Зависимые и независимые события.
			Полная группа событий. Основные формулы для
			вычисления вероятностей случайных событий
			вычисления вероятностей случайных сооытий
			(сумма и произведение вероятностей, условная
			(сумма и произведение вероятностей, условная
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли.
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел.
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные характеристики случайных величин
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные характеристики случайных величин (математическое ожидание, дисперсия, среднее
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные характеристики случайных величин (математическое ожидание, дисперсия, среднее квадратическое отклонение (СКО), мода, медиана).
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные характеристики случайных величин (математическое ожидание, дисперсия, среднее квадратическое отклонение (СКО), мода, медиана). Основные законы распределения случайных
			(сумма и произведение вероятностей, условная вероятность, формула полной вероятности, формула Бейеса). Схема Бернулли. Формула Бернулли. Понятие о предельных теоремах и законе больших чисел. 3.2. Случайные величины Понятие случайной величины. Дискретные и непрерывные случайные величины. Численные характеристики случайных величин (математическое ожидание, дисперсия, среднее квадратическое отклонение (СКО), мода, медиана).

1л,2з	4	Математическая	4.1. Выборочный метод
		статистика	Предмет и задачи математической статистики.
			Основные понятия математической статистики
			(генеральная совокупность, выборка, частота,
			относительная частота, полигон частот,
			гистограмма). Численные характеристики
			генеральной совокупности и их точечные оценки
			(выборочная средняя, выборочная дисперсия,
			исправленная дисперсия, выборочное СКО,
			исправленное выборочное СКО). Интервальные
			оценки генеральной совокупности. Доверительные
			интервалы характеристик нормально
			распределенных генеральных совокупностей и
			способы их вычисления.
			4.2. Методы проверки статистических гипотез
			Понятия статистической гипотезы и
			статистического критерия. Наблюдаемое и
			критическое значения критерия. Критические
			области. Проверка гипотез о виде распределения и о
			значениях параметров распределений.
			4.3. Корреляция и регрессия
			Линейная корреляция (выборочное уравнение
			прямой линии регрессии, корреляционная таблица,
			выборочный коэффициент корреляции). Линейная
			регрессия, метод наименьших квадратов.
			Статистический анализ значимости уравнения
			парной линейной регрессии. Понятие о нелинейной
			регрессии.

2.2. Разделы учебной дисциплины, виды учебной деятельности и формы контроля

№ семес тра	№ разде ла	Наименование раздела учебной	Виды учебной деятельности, включая самостоятельную работу студентов (в часах)					
•		дисциплины	Л	ЛР	ПЗ	CPC	всего	
1у,1з	1	Линейная алгебра	6	6		62	74	
1з,1л	2	Математический анализ	6	20		67	93	
1л,2з	3	Теория вероятностей и математическая статистика	6	10		74	90	
1л,2з	4	Теория вероятностей и математическая статистика	4	4		42	50	
		Разделы 1-4	22	40		245	307	
		Контроль					17	
		ВСЕГО					324	

2.3. Лабораторный практикум

№ курса	№ раздела	пазлела учебной Наименование лабопатопных пабот		Всего часов
			Операции над векторами и матрицами.	2
	1	Линейная алгебра	Системы линейных уравнений.	2
			Модель межотраслевого баланса.	2
			Введение в математический анализ.	4
			Дифференциальное исчисление	
			функций одной и нескольких	
	2	Математический	переменных.	4
		анализ	Интегральное исчисление.	6
			Обыкновенные дифференциальные	
			уравнения.	4
1.2			Экономические приложения	
1,2			математического анализа.	2
			Свойства вероятностей. Формулы	
			полной вероятности и Байеса.	2
			Классическая вероятность. Теория	
	3	Теория вероятностей	перечислений.	2
			Геометрическая вероятность.	2
			Схема Бернулли.	2
			Случайные величины.	2
		Математическая	Элементы математической статистики.	2
	4	статистика	Элементы теории корреляции.	
		Claincinka	Линейная регрессия.	2
			Итого	40

2.4. Курсовые работы по дисциплине не предусмотрены.

3. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТА

3.1. Виды СРС

№ курса	№ раз де ла	Наименование раздела учебной дисциплины	Виды СРС	Всего часов
				62
	1	Линейная	Работа со справочными материалами	28
	1	алгебра	Изучение и конспектирование литературы	29
			Подготовка контрольной работы	5
	2			67
		Математический	Работа со справочными материалами	14
		анализ	Изучение и конспектирование литературы	46
1,2			Подготовка контрольной работы	7
1,2				74
	3	Теория	Работа со справочными материалами	32
	3	вероятностей	Изучение и конспектирование литературы	34
			Подготовка контрольной работы	8
				42
	4	Математическая	Работа со справочными материалами	14
	4	статистика	Изучение и конспектирование литературы	23
			Подготовка контрольной работы	5
	И	ТОГО		245

3.2. График работы студента (заполняется для очной формы обучения)

3.3. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Учебники и учебные пособия (см. раздел 5).
- 2. Перечень вопросов и методические рекомендации для подготовки к письменному тестированию содержатся в учебно-методическом издании

Математика [Текст] : Программа дисциплины и учебно-методические рекомендации / Сост. Е.Ю. Лискина. — Рязань: Изд-во РГУ, 2010. — 156 с.

Примерная тематика проверочных работ в полном объеме представлена в учебно-методическом издании

Математика [Текст] : Программа дисциплины и учебно-методические рекомендации / Сост. Е.Ю. Лискина. — Рязань: Изд-во РГУ, 2010. — 156 с.

См. также п.11 настоящей рабочей программы (таблица «Примеры оценочных средств»)

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ УСПЕВАЕМОСТИ И **РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ** ДИСЦИПЛИНЫ (см. Фонд оценочных средств)

4.1. Рейтинговая система оценки знаний обучающихся по учебной дисциплине *Рейтинговая система не используется*

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ИНФОРМАЦИОННОЕ

5.1. Основная литература

	оповная зипература	Ионо и рустоя		Количество экземпляров	
№ π/π	Автор (ы), наименование, место издания и издательство, год	Используется при изучении разделов	Kypc	в библиоте ке	на кафедр е
1	2	3	4	5	6
1.	Математика [Текст]: практикум / автсост. Е.Ю. Лискина; Ряз. гос. ун-т им. С.А. Есенина. – 2-е изд., испр. и доп. – Рязань, 2009. – Ч. 1. – 204 с. – ISBN 978–5– 88006–607–0.	1-3	1,2	20	
2.	Математика [Текст] : практикум / автсост. Е.Ю. Лискина ; Ряз. гос. ун-т им. С.А. Есенина. – Рязань, 2009. – Ч. 2. – 232 с. – ISBN 978–5–88006–608–7.	4	1,2	20	
3.	Кремер, Н. Ш. Высшая математика для экономического бакалавриата [Электронный ресурс]: учебник и практикум / Н. Ш. Кремер; под ред. Н. Ш. Кремера 5-е изд., перераб. и доп М.: Юрайт, 2014 909 с Режим доступа: https://www.biblio-online.ru/book/EDF405ED-E895-42DE-9744-ED48C83187DC (дата обращения: 25.08.2018).	1-4	1,2	ЭБС	

5.2. Дополнительная литература

		Используетс		Количество экземпляров	
№ п/п	Автор (ы), наименование, место издания и издательство, год	я при изучении разделов	Kypc	в библиоте ке	на кафедр е
1	2	3	4	5	6
1.	Лискина, Е.Ю. Экономико-математические модели [Электронный ресурс]: учебное пособие / Е.Ю. Лискина; РГУ им. С.А. Есенина Рязань: РГУ, 2009 110 с Режим доступа: http://dspace.rsu.edu.ru/xmlui/handle/123456789/636 (дата обращения: 25.08.2019).	1-2	1,2	ЭБ РГУ	
2.	Математика [Текст] : Программа дисциплины и учебно-методические рекомендации / Сост. Е.Ю. Лискина. – Рязань: Изд-во РГУ, 2010. – 156 с.	1-2	1,2	20	

5.3. Базы данных, информационно-справочные и поисковые системы:

1. Научная библиотека РГУ имени С. А. Есенина [Электронный ресурс]: сайт. – Режим доступа: http://library.rsu.edu.ru, свободный (дата обращения: 25.08.2018).

- 2. Университетская библиотека ONLINE [Электронный ресурс]: электронная библиотека. Доступ к полным текстам по паролю. Режим доступа: http://biblioclub.ru/ (дата обращения: 25.08.2018).
- 3. Электронный каталог НБ РГУ имени С. А. Есенина [Электронный ресурс]: база данных содержит сведения о всех видах литературы, поступающих в фонд НБ РГУ имени С.А. Есенина. Рязань, [1990]. Режим доступа: http://library.rsu.edu.ru/marc, свободный (дата обращения: 25.08.2018).
- 4. Юрайт [Электронный ресурс]: электронная библиотека. Доступ к полным текстам по паролю. Режим доступа: https://www.biblio-online.ru (дата обращения: 25.08.2018).

5.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее — сеть «Интернет»), необходимых для освоения дисциплины.

- 1. Allmath.ru: Вся математика в одном месте [Электронный ресурс]: математический портал. Режим доступа: http://www.allmath.ru/, свободный (дата обращения 25.08.2018).
- 2. Российское образование [Электронный ресурс]: федеральный портал. Режим доступа: http://www.edu.ru/, свободный (дата обращения 25.08.2018).
- 3. Федеральная служба государственной статистики [Электронный ресурс]: официальный сайт. Режим доступа: http://www.gks.ru/, свободный (дата обращения 25.08.2018).

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

- 6.1 Требования к аудиториям (помещениям, местам) для проведения занятий: Стандартно оборудованные лекционные аудитории и аудитории для проведения лабораторных занятий.
- 6.2. Требования к оборудованию рабочих мест преподавателя и обучающихся: Видеопроектор, ноутбук, переносной или стационарный экран. В аудиториях должны быть установлены средства LibreOffice или аналогичные.
 - 6.3. Требования к специализированному оборудованию: отсутствуют

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ (Заполняется только для стандарта ФГОС ВПО)

8. Методические указания для обучающихся по освоению дисциплины

Вид учебных	Организация деятельности студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, перед лабораторной работой. Уделить внимание следующим понятиям: матрица, определитель квадратной матрицы, ранг матрицы, вектор, уравнение прямой, предел последовательности, функция, предел функции, непрерывность функции, производная, экстремум, первообразная, определенный интеграл, функция

	многих переменных, ее производные и экстремумы, случайное событие, вероятность, классическая схема расчета вероятностей, схема Бернулли, случайная величина, выборочный метод, статистическая гипотеза, корреляция.
Лабораторная работа	Изучение и освоение вычислительных алгоритмов, изученных в разделе на примере заданий из практикума.
Подготовка к экзамену / зачету	При подготовке к экзамену (зачету) необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и др.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Использование электронных изданий (ЭБС) при изучении теоретического материала, при подготовке к защите лабораторных работ, зачёту и экзамену.
- 2. Использование баз данных Федеральной службы государственной статистики, имеющихся в открытом доступе (<u>www.gks.ru</u>).
- 3. Организация взаимодействия с обучающимися посредством электронной почты.

10. Требования к программному обеспечению учебного процесса:

Операционная система Windows Professional 7 (Подписка Dream Spark договор №Tr000043844 от 22.09.15г.);

Антивирус Kaspersky Endpoint Security (договор№02-3К-2019 от 15.04.2019г.);

Офисное приложение LibreOffice (свободно распространяемое ПО);

Архиватор 7-гір (свободно распространяемое ПО);

Браузер изображений Fast Stone Image Viewer (свободно распространяемое ПО);

PDFридер Foxit Reader (свободно распространяемое ПО);

Медиа проигрыватель VLC mediaplayer (свободно распространяемое ПО);

Запись дисков ImageBurn (свободно распространяемое ПО);

DJVU браузер DjVu Browser Plug-in (свободно распространяемое ПО

Приложение 1

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Паспорт фонда оценочных средств по дисциплине для промежуточного контроля успеваемости (1 семестр)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного средства
1.	Линейная алгебра с элементами аналитической геометрии	ОПК-3	Зачёт
2.	Математический анализ]	

Паспорт фонда оценочных средств по дисциплине для промежуточного контроля успеваемости (2 семестр)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного средства
1	Линейная алгебра с элементами аналитической геометрии		
2.	Математический анализ	ОПК-3	Экзамен
3.	Теория вероятностей		
4.	Математическая статистика		

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Индекс компете нции	Содержание компетенции	Элементы компетенции	Индекс элемента
ОПК-3	способность выбирать инструментальные средства для обработки экономических	3нать 1) основные понятия математики, 2) алгоритмы решения стандартных задач, 3) методы математической обработки данных уметь	ОПКЗ 31 ОПКЗ 32 ОПКЗ 33
	данных в соответствии с	1) выбирать методы расчетов в соответствии с поставленной задачей,	ОПК1 У1
	поставленной задачей, анализировать	2) выбирать инструментальные средства обработки экономических данных в соответствии с поставленной задачей	ОПК1 У2
	результаты расчетов и обосновывать	3) интерпретировать и анализировать полученный математический результат	ОПК1 У3
	полученные выводы	владеть	
		1) навыками классических математических расчётов,	ОПКЗ В1
		2) навыками статистической обработки данных,	ОПКЗ В2
		3) навыками построения логически обоснованных рассуждений	ОПКЗ ВЗ

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (зачет, 1з семестр)

No॒	ADDITIONED TO INCIDENT TECHNIQUE	Индекс оцениваемой
	Содержание оценочного средства	компетенции и ее
		элементов
	Вопросы к зачету по разделу 1:	
1.	Сформулируйте определения арифметического вектора и	ОПКЗ 31, 32, 33, У1, У2,
1.	скалярного произведения векторов. Проиллюстрируйте	У3; В1, В2, В3;
	определения примерами.	
2	Сформулируйте определения арифметического вектора и	ОПКЗ 31, 32, 33, У1, У2,
	векторного произведения векторов. Проиллюстрируйте	У3; В1, В2, В3;
	определения примерами.	
3.	Сформулируйте определения арифметического вектора,	ОПКЗ 31, 32, 33, У1, У2,
	произведения вектора на число и суммы векторов.	У3; В1, В2, В3;
	Проиллюстрируйте определения примерами.	
4.	Сформулируйте определения матрицы, произведения	ОПКЗ 31, 32, 33, У1, У2,
	матрицы на число и суммы матриц. Проиллюстрируйте	У3; В1, В2, В3;
	определения примерами.	
5.	Сформулируйте определения матрицы, произведения	ОПКЗ 31, 32, 33, У1, У2,
	матриц. Проиллюстрируйте определения примерами.	У3; В1, В2, В3;
6.	Сформулируйте понятие определителя матрицы первого и	ОПКЗ 31, 32, 33, У1, У2,
	второго порядков. Проиллюстрируйте определения	У3; В1, В2, В3;
	примерами.	
7.	Сформулируйте понятие определителя матрицы через	ОПКЗ 31, 32, 33, У1, У2,
	разложение по строке. Проиллюстрируйте определение	У3; В1, В2, В3;
	примерами.	
8.	Сформулируйте понятие определителя матрицы через	ОПКЗ 31, 32, 33, У1, У2,
	разложение по столбцу. Проиллюстрируйте определение	У3; В1, В2, В3;
	примерами.	
9.	Сформулируйте свойства определителя матрицы.	ОПКЗ 31, 32, 33, У1, У2,
	Проиллюстрируйте определение примерами.	У3; В1, В2, В3;
10.	Сформулируйте алгоритм приведения матрицы к	ОПКЗ 31, 32, 33, У1, У2,
	ступенчатому виду. Проиллюстрируйте ответ примерами.	У3; В1, В2, В3;
11.	Сформулируйте понятие ранга матрицы. Проиллюстрируйте	ОПКЗ 31, 32, 33, У1, У2,
	определение примерами.	У3; В1, В2, В3;
12.	Сформулируйте определения линейно зависимых и линейно	ОПКЗ 31, 32, 33, У1, У2,
	независимых векторов. Проиллюстрируйте определения	У3; В1, В2, В3;
1.0	примерами.	OHI(2 21 22 22 V1 V2
13.	Сформулируйте понятие базиса пространства.	ОПКЗ 31, 32, 33, У1, У2,
1 1	Проиллюстрируйте ответ примерами.	У3; В1, В2, В3;
14.		ОПКЗ 31, 32, 33, У1, У2,
	заданном базисе пространства. Проиллюстрируйте ответ	У3; В1, В2, В3;
1 5	примерами. Сформулируйте понятие системы линейных алгебраических	ОПКЗ 31, 32, 33, У1, У2,
15.		У3; B1, B2, B3;
	уравнений. Проиллюстрируйте ответ прикладными примерами.	3 3, D1, D2, D3,
1 4		ОПКЗ 31, 32, 33, У1, У2,
16.	Проиллюстрируйте ответ прикладными примерами.	У3; B1, B2, B3;
17		ОПКЗ 31, 32, 33, У1, У2,
17.	ответ прикладными примерами.	У3; В1, В2, В3;
18.		ОПКЗ 31, 32, 33, У1, У2,
10.	сформулирунто условия продуктивности для модели	01110 01, 02, 00, 51, 52,

		V2. D1 D2 D2.
	межотраслевого баланса. Проиллюстрируйте ответ	У3; В1, В2, В3;
	прикладными примерами.	
19.	Сформулируйте условия и способ применения метода	ОПКЗ 31, 32, 33, У1, У2,
	обратной матрицы для решения линейной системы.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
20.	Сформулируйте условия существования ненулевого решения	ОПКЗ 31, 32, 33, У1, У2,
	линейной однородной системы с квадратной основной	У3; В1, В2, В3;
	матрицей. Проиллюстрируйте ответ примерами.	
21.	Сформулируйте условия и способ применения метода	ОПКЗ 31, 32, 33, У1, У2,
	обратной матрицы для решения линейной системы.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
22.	Сформулируйте условия и способ применения метода	ОПКЗ 31, 32, 33, У1, У2,
	обратной матрицы для решения линейной системы.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
23.	Сформулируйте условия и способ применения метода	ОПКЗ 31, 32, 33, У1, У2,
	Крамера для решения линейной системы.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
24.	Сформулируйте условия и способ применения метода Гаусса	ОПКЗ 31, 32, 33, У1, У2,
	для решения линейной системы. Проиллюстрируйте ответ	У3; В1, В2, В3;
	примерами.	
25.	Сформулируйте условия несовместности для линейной	ОПКЗ 31, 32, 33, У1, У2,
	системы. Проиллюстрируйте ответ примерами с помощью	У3; В1, В2, В3;
	метода Гаусса.	

ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ (Шкалы оценивания)

Результаты выполнения обучающимся заданий на зачете оцениваются по шкале «зачтено» - «не зачтено».

В основе оценивания лежат критерии порогового и повышенного уровня характеристик компетенций или их составляющих частей, формируемых на учебных занятиях по дисциплине **Математика** (Таблица 2.5 рабочей программы дисциплины).

«Зачтено» — оценка соответствует повышенному и пороговому уровню и выставляется обучающемуся, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

«Не зачтено» - оценка выставляется обучающемуся, который не достигает порогового уровня, демонстрирует непонимание проблемы, не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (зачет, 2з семестр)

No॒	Содержание оценочного средства	Индекс оцениваемой компетенции и ее элементов
	Вопросы к зачету по разделу 2:	SHEMENTOD
1	Сформулируйте понятие функции, укажите виды функций в зависимости от размерностей ее значений и аргументов. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
2	Сформулируйте понятие предела функции в точке. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
3.	Сформулируйте понятия непрерывности функции в точке и на множестве. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
4.	Сформулируйте свойства функции одной переменной, непрерывной на отрезке. Проиллюстрируйте ответ примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
5.	Сформулируйте свойства операций над конечными пределами, над непрерывными функциями. Проиллюстрируйте ответ примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
6.	Сформулируйте понятие производной функции одной переменной. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
7.	Сформулируйте свойства операций над производными. Проиллюстрируйте ответ примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
8.	Сформулируйте понятие производной функции многих переменных. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
9.	Сформулируйте понятия производной функции многих переменных по направлению и градиента. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
10.	Сформулируйте необходимые условия экстремума для функции одной переменной, для функции многих переменных. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
11.	Сформулируйте для функции одной переменной: достаточные условия экстремума, правило поиска наибольшего и наименьшего значений на отрезке. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
12.	Запишите уравнения касательной и нормали к графику вещественной функции одной переменной. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
13.	Сформулируйте признак условного экстремума. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
14.	Сформулируйте понятия первообразной и неопределенного интеграла. Проиллюстрируйте ответ примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
15.	Сформулируйте свойства неопределенного интеграла. Проиллюстрируйте ответ примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
16.	Сформулируйте для функции одной переменной определение интеграла Римана. Проиллюстрируйте ответ прикладными примерами.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;

17.		ОПКЗ 31, 32, 33, У1, У2,
	интегрируемости. Проиллюстрируйте ответ прикладными	У3; В1, В2, В3;
	примерами.	
18.		ОПКЗ 31, 32, 33, У1, У2,
	неопределенного и для определенного интегралов.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
19.	Сформулируйте правило замены переменной для	ОПКЗ 31, 32, 33, У1, У2,
	неопределенного и для определенного интегралов.	У3; В1, В2, В3;
	Проиллюстрируйте ответ примерами.	
20.		ОПКЗ 31, 32, 33, У1, У2,
	Проиллюстрируйте ответ примерами.	У3; В1, В2, В3;
21.		ОПКЗ 31, 32, 33, У1, У2,
	Проиллюстрируйте ответ прикладными примерами.	У3; В1, В2, В3;
22.	Опишите экономические приложения интегралов.	ОПКЗ 31, 32, 33, У1, У2,
	Проиллюстрируйте ответ прикладными примерами.	У3; В1, В2, В3;
23.	Сформулируйте для дифференциального уравнения	ОПКЗ 31, 32, 33, У1, У2,
	теорему о существовании и единственности решения	У3; В1, В2, В3;
	задачи Коши, поясните геометрический смысл теоремы.	
	Проиллюстрируйте ответ примерами.	
24.	1 11 1	ОПКЗ 31, 32, 33, У1, У2,
	уравнения с разделяющимися переменными.	У3; В1, В2, В3;
	Проиллюстрируйте ответ прикладными примерами.	
25.		ОПКЗ 31, 32, 33, У1, У2,
	дифференциального уравнения. Проиллюстрируйте ответ	У3; В1, В2, В3;
	прикладными примерами.	
1	1 1 Pro Transport Contract	1

ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ (Шкалы оценивания)

Результаты выполнения обучающимся заданий на зачете оцениваются по шкале «зачтено» - «не зачтено».

В основе оценивания лежат критерии порогового и повышенного уровня характеристик компетенций или их составляющих частей, формируемых на учебных занятиях по дисциплине **Математика** (Таблица 2.5 рабочей программы дисциплины).

«Зачтено» — оценка соответствует повышенному и пороговому уровню и выставляется обучающемуся, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

«Не зачтено» - оценка выставляется обучающемуся, который не достигает порогового уровня, демонстрирует непонимание проблемы, не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (экзамен, 2з семестр)

Ma	Apprili onems to month the main (sas	• • •
№		Индекс оцениваемой
	Содержание оценочного средства	компетенции и ее элементов
1.	А) Сформулируйте определение матрицы. Перечислите	ОПКЗ 31, 32, 33, У1, У2,
	элементарные преобразования матриц.	У3; В1, В2, В3;
	Б) Объясните, почему в элементарных преобразованиях	
	матриц важно, что строка (столбец) умножается на число,	
	не равное нулю.	
	B) Найти ранг матрицы $\begin{bmatrix} 1 & 3 & 0 & -5 & 7 \\ 2 & -1 & 2 & 1 & -3 \\ 4 & -4 & 0 & 0 & 0 \end{bmatrix}$.	
	В) Наити ранг матрицы $\begin{bmatrix} 2 & -1 & 2 & 1 & -3 \\ 4 & -4 & 0 & 0 & 0 \end{bmatrix}$.	
2.	А) Сформулируйте определение первообразной функции.	ОПКЗ 31, 32, 33, У1, У2,
	Перечислите свойства первообразных.	У3; В1, В2, В3;
	Б) Требуется вычислить $\int \frac{(x^5+3x-2)dx}{x^3+x^2-2x}$. Как выглядит первое	
	Б) Греоуется вычислить $\int \frac{1}{x^3 + x^2 - 2x}$. Как выглядит первое	
	действие? Почему?	
	B) Вычислите $\int \cos^2 4x dx$.	
	<u> </u>	
3.	А) Перечислите критерии, которые используют при	ОПКЗ 31, 32, 33, У1, У2,
	проверке гипотез о числовых значениях параметров	У3; В1, В2, В3;
	нормального распределения, приведите формулы для	
	вычисления наблюдаемых значений этих критериев.	
	Б) Приведите примеры экономических задач, в которых	
	они используются.	
	В) По данным 9 независимых равноточных измерений	
	некоторой величины найдены выборочное среднее	
	результатов измерений \bar{x} =30,1 и выборочное СКО σ =6.	
	Предполагается, что результаты измерений распределены	
	нормально. На уровне значимости проверить гипотезу о	
	том, что генеральная дисперсия признака равна 25.	
4.	А) Сформулируйте определение определителя квадратной	ОПКЗ 31, 32, 33, У1, У2,
	матрицы. Перечислите свойства определителей.	У3; B1, B2, B3;
	Б) Чему равен определитель квадратной матрицы,	7 3, 21, 22, 23,
	содержащей нулевую строку? Обоснуйте ответ.	
	В) Вычислите определитель двумя способами: $\begin{bmatrix} 3 & 2 & 7 \\ -2 & 3 & -2 \end{bmatrix}$	
	4 5 11	
5.	А) Сформулируйте определение неопределённого	ОПКЗ 31, 32, У1, В1
	интеграла. Перечислите свойства неопределённых	- ,,, - ,
	интегралов.	
	Б) Найдите ошибку, укажите и исправьте её.	
	$\left(\int f(x)dx\right)' = f(x)dx.$	
	B) Вычислите $\int x \arctan x dx$.	
6.	А) Сформулируйте определения парной регрессионной	ОПКЗ 31, 32, 33, У1, У2,
	модели У на X, выборочной ковариации, выборочного	У3; В1, В2, В3;
	коэффициента корреляции, выборочного коэффициента	
	регрессии У на Х.	
	Б) Объясните, как оценить силу и тесноту линейной	
	регрессионной связи	

	зависимости						ие даг :				
	Р, Цена (руб.)	10	11	12	13	14	15	16	17	18	3
	Q, Спрос (ед. товара)	91	88	80	75	68	65	59	55	53	3
	Найдите вид лиг	нейно	й зав	исим	ости	спро	са от	цены	ί,		
	оцените тесноту						-			зу	
	о существовани										
	совокупности.										
•	А) Сформулиру										ОПКЗ 31, 32, 33, У1, У2,
	алгебраических	У3; В1, В2, В3;									
	условие определ				тнои	і сис	гемы	линеі	иных		
	алгебраических				¥40 ¥ W	• • • • • • • • • • • • • • • • • • • •					
	Б) Сколько неиз	вестн	ых и	СКОЛЕ	ко уг	оавне	нии Д	толжн	10 **	σ.	
	быть в системе л того, чтобы по е										
	что система явля		•	-			ОБІЛС	OBIC	Kasai	ь,	
	В) Решить систе			-			ских	vnarı	тениі	ž	
	$\int x_1 + x_2 + x_3 = 1,$	7111y 511	1110111	ibizi di	ii cop	, aii ic	CKIIIX	ураві	1011111		
	$\begin{cases} x_1 - x_2 + x_3 = -1, \end{cases}$	_									
	$\begin{vmatrix} x_1 + x_2 - x_3 = 1. \end{vmatrix}$,									
j.		uma ai	тропо	ПОШ	2 2 1 12	2727	ä	20 1111	OF1201	7.0	ОПИ2 21 22 22 V1 V2
•	А) Сформулиру функции на про	межу	тке. І	Іереч	исли	те ег	о сво	йства			ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
	Б) Требуется вы	числі	ить иі	нтегр	ал∫ Ј	x^2 ar	ccos x	dx me	стодо	M	
	вычисления по ч	астя	м. Ка	кую d	ункі	цию	приня	ть за	u, a		
	какую за v' ? Поч			, ,			1				
	11	13		_							
	В) Вычислите	'√1 o	$+e^{x}$	$e^x dx$	•						
	А) Сформулиру коэффициент		-			-		свой	ства.	,	OIIK3 31, 32, 33, Y1, Y2, Y3; B1, B2, B3;
	Б) При построении уравнения парной линейной регрессии коэффициент корреляции получился равным										
	$r_{xy} = 0.33$. Поясните, можно ли использовать данное										
	уравнение для прогнозирования?										
	В) Число билето				•		10				
	матча (Х), и число зрителей, пришедших затем на матч										
	(У), составлян	от сл	едуюі	ций р	яд зн	начен	ий:				
	Х (тыс. 3	, 4,	5,8	$\frac{4}{3}$	3,	4,	5 1	6,3	3,	5	
	шт.) 5	6	- , -	2	8	3	5,1	0,3	0	2	
	У (тыс. 8	' '	11.	, 6,	9,	8,	10,	12,	5,	7	
	чел.) 1		3	9	1	8	5	0	8		2
	Выясните, суще										
	ХиУ (вычислит							coppe.	пяци	И	
	и проверить его			-	_						
0.	А) Сформулиру	йте о	преде	лени	е лин	ии в	трёх	мерно	DМ		ОПКЗ 31, 32, 33, У1, У2,
	пространстве.										У3; В1, В2, В3;
	Б) Приведите различные виды записи уравнений прямой в										1

	пространстве. Поясните смысл коэффициентов.	
	В) Найдите уравнение прямой, проходящей через точку	
	A(1;-2), параллельной прямой $3x-2y-3=0$.	
11.	А) Сформулируйте определение несобственного	ОПКЗ 31, 32, 33, У1, У2,
	интеграла первого рода, приведите графическую	У3; В1, В2, В3;
	иллюстрацию.	
	Б) Найти ошибку, указать и исправить ее: Если функция	
	монотонно возрастает на промежутке, то она	
	интегрируема.	
	$\int_{0}^{+\infty} dx$	
	B) Вычислите: $\int_{-x^2+2x}^{+\infty} \frac{dx}{x^2+2x}$.	
12.	L	OHK2 21 22 22 V1 V2
12.	А) Сформулируйте определения функциональной, статистической и корреляционной зависимостей.	ОПКЗ 31, 32, 33, У1, У2,
	Приведите классификацию регрессионных моделей.	У3; В1, В2, В3;
	Б) Как можно истолковать значение $ r_{xy} \in (0,3;0,7]$?	
	В) Имеются данные о цене однокомнатной квартиры и	
	величине её общей площади по 10 сделкам одного	
	района города.	
	Х, Площадь, кв. м 35 35 33 34 38 40 4	
	V Hena khantunki tkic	
	у. е. 29 31 35 35 45 46 4	
	Построить поле корреляции и сформулировать гипотезу о	
	форме связи. Рассчитать параметры парной линейной	
	регрессии У на Х.	
13.	А) Сформулируйте определение числовой	ОПКЗ 31, 32, 33, У1, У2,
	последовательности и её предела. Приведите свойства	У3; В1, В2, В3;
	пределов последовательностей.	
	Б) Найдите ошибку, укажите и исправьте её:	
	$\lim_{n \to \infty} \frac{\log_a n}{n} = +\infty \ (a > 1).$	
	$n \to +\infty$ $n = (\alpha > 1)$.	
	B) Вычислите: $\lim \frac{x + 4 - 2}{\sqrt{1 - 2}}$.	
	$x \to 0$ $x \to 0$ $x \to 0$	
14.	А) Сформулируйте определение несобственного	ОПКЗ 31, 32, 33, У1, У2,
1	интеграла второго рода, приведите графическую	У3; B1, B2, B3;
	иллюстрацию.	3, 51, 52, 53,
	Б) В чём состоит отличие несобственного интеграла 1-го	
	рода от обычного определённого интеграла?	
	$\int_{-\infty}^{\infty} dx$	
	B) Вычислите: $\int_{1}^{\infty} \frac{dx}{x^2 - 2x}$.	
	1	
15.	А) В каких задачах возникают статистические гипотезы о	ОПКЗ 31, 32, 33, У1, У2,
	числовых значениях параметров? Запишите общий	У3; В1, В2, В3;
	вид основной гипотезы для этих задач.	
	Б) Объясните, как связаны уровень значимости и	
	надёжность?	
	D) Портия из толий приним сотоя соли пистороня	
1	В) Партия изделий принимается, если дисперсия	
1	контролируемого размера значимо не превышает 0,2.	
	контролируемого размера значимо не превышает 0,2. исправленная выборочная дисперсия, найденная по	
	контролируемого размера значимо не превышает 0,2.	

	П	
	Предполагается, что контролируемый размер распределён нормально.	
16.	А) Сформулируйте определение бесконечно малой последовательности. Сформулируйте свойства бесконечно малых последовательностей.	ОПК3 31, 32, 33, У1, У2, У3; В1, В2, В3;
	Б) Пусть $\{x_n\}$ — бесконечно большая последовательность.	
	Каким свойством обладает последовательность $\left\{ \begin{array}{l} 1 \\ x_n \end{array} \right\}$	
	Почему?	
	B) Вычислить: $\lim \frac{n^2 + 8n}{2}$	
17	В) Вычислить: $\lim_{n\to\infty}\frac{n+6n}{4-n}$ А) Сформулируйте определение градиента функции двух	OHI(2 21 22 22 VI V2
17.	А) Сформулируите определение градиента функции двух переменных и его свойства.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
	Б) Как с помощью градиента узнать, как меняется	3, 51, 52, 53,
	(возрастает или убывает) функция двух переменных?	
	В) Вычислите $gradf(M_0)$, если $f(x, y) = x^2 + 3y^4$, $M_0(4; 2)$.	
18.	А) Сформулируйте определения статистического	ОПКЗ 31, 32, 33, У1, У2,
	критерия, его наблюдаемого и критического значений,	У3; В1, В2, В3;
	критической области. Перечислите виды критических	
	областей. Сформулируйте основной принцип проверки статистических гипотез.	
	Б) Перечислите факты, которые позволяют выдвинуть	
	гипотезу о нормальном распределении некоторого	
	признака.	
	В) Дано распределение признака X – число сделок на	
	фондовой бирже за квартал (n – число инвесторов):	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	n_i 14 9 7 3 2 1 6 3 4 2 2	
	Обосновать выбор распределения и выдвинуть гипотезу о	
19.	виде распределения. А) Сформулируйте определение предела функции в точке.	ОПКЗ 31, 32, 33, У1, У2,
17.	Перечислите свойства пределов функций.	V3; B1, B2, B3;
	Б) Найдите ошибку, укажите и исправьте её:	, , -,,
	$\lim_{x \to -\infty} a^x = -\infty, \ a > 1.$	
	B) Вычислите: $\lim_{x \to 4-2}$	
20.	$x \to 0$ x A) Сформулировать определения замкнутого	ОПКЗ 31, 32, 33, У1, У2,
20.	ограниченного множества и глобального экстремума	У3; B1, B2, B3;
	функции двух переменных на замкнутом ограниченном	-,,,,
	множестве.	
	Б) Приведите экономическую интерпретацию	
	глобального экстремума функции двух переменных на	
	замкнутом ограниченном множестве. В) Найти наибольшее и наименьшее значения функции	
	$Z = x^2 + xy + y^2 + x - y + 1$ на множестве, заданном	
	неравенствами $x \ge 0$, $y \ge 0$, $y \le 1 - x$.	
	1 , , , , , , , , , , , , , , , ,	I

21.	А) Сформу	иныйта	ОПКЗ 31, 32, 33, У1, У2,					
21.	гипотезы,			У3; B1, B2, B3;				
					-		торого рода?	3 3, B1, B2, B3,
	Б) Для неп							
	и гистогра		-					
	выдвинуть							
	В) Получе	_			-			
	значений н		-			-		
	совокупно	сти (x_i –	середи	ны ин	терва	алов и	нтервального	
	ряда).							
	x_i 2	4 6	8	10	12	14		
	n_i 8	16 40	72	36	18	10		
	$n_i' \mid 6$	18 36		39	18	7		
	Построить							
					-	_	оверить на	
	• •				<u> </u>		спределения.	
22.						цующи	их функций:	ОПКЗ 31, 32, 33, У1, У2,
	чётной, не							У3; В1, В2, В3;
							ой. Может ли	
	при этом о	на быть	четной	? Объ	яснит	е, исп	юльзуя	
	определен	ия. Прив	едите п	риме	p.			
	В) Найти т	าดแหน ทุลว	nriba y	WHKIII	f(x)	د <u>ــا</u> کے ا	$x, x \neq 1, \mathbf{u}$	
	b) Hanin i	очки раз	рыва ф	ушкці	an ()		n	
						(0,	x = 1,	
22	указать их							OFFIC2 21 22 22 X1 X2
23.							го максимума и	ОПКЗ 31, 32, 33, У1, У2,
	локального							У3; В1, В2, В3;
	локального			•		-	ествования	
	Б) Приведі	-			-	_		
							ию пума функции	
	двух перем		вих ло	кальн	OI O JR	Стрсм	гума функции	
	•		-	, 2	2 2			
	В) Исследу							07770 01 00 00 00
24.	/ 1 1 0		-				ти, точечной и	ОПКЗ 31, 32, 33, У1, У2,
	-	альной о		-	-	_		У3; В1, В2, В3;
	•						неральной	
							ой оценки?	
	/ 1				орки,	от ко	горых зависит	
		ть точечі						
	В) Дано эм	-	-	-		-	-	
	-	ка X (^х _i -						
	ряда):							
	x_i 2	4 6						
	n_i 5	10 20	12	9				
				_	ПОВАТ	мтепт	ный интервал	
	для генера							
25.	А) Сформу							ОПКЗ 31, 32, 33, У1, У2,
L 4.).	глу Сформу	улируите	OHKJ J1, J2, J3, Y1, Y2,					
	функци	ии в точк	е, пере	числи	те её	свойс		У3; В1, В2, В3;

	1												
	Γ	Іочем	ıy?				нечн	о мал	ой (фун	кци	ей?	
	B) B	ычис	ЛИТЕ	$\lim_{x\to 2}$	$\frac{(x-x)^2}{x^2-x^2}$	$\frac{2)^2}{4}$							
26.	лока Сфој лока Б) П экстј	$\frac{1}{x \to 2} \frac{1}{x^2 - 4}$ А) Сформулируйте определения локального максимума и локального минимума функции двух переменных. Сформулируйте достаточное условие существования локального экстремума функции двух переменных. Б) Приведите экономическую интерпретацию локального экстремума функции двух переменных.										ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;	
	,	сслед ремун	•	е фу	нкці	ию 2	$Z = x^3$	$^{3} + x^{2}$	y –	2 y	на		
27.	A) С и с а Б) Ка г В) Д х _i п _i Найт выбоское инте откл	форм справентра симм акая в енера ано р 2 5 ги вы орочноткл рвал онен	ули влен его к альн етри вели аспр 4 10 боро ую для ия с	пной свадуюто и и и и и и и и и и и и и и и и и и и	выбрати эмпі эксі а бол дисп лени б но ді ерсі вари.	орочческирическирическирическа преста преста преста преста при в в в в в в в в в в в в в в в в в в в	нной сого составлять на почно поставлять на почно поставлять на почното средно по по средно по	откло их мом ирич о хара о или ика X: о, испрочного рядеднего рядеднего рядельного.	ерсінен иентеск кте у 2 т	ий, пия, гов ого риз ? По ден дого адр	выб нач пор. раст ует очем ную нее вери атич	орочного ального и ядка ^k , пределения. у? квадратиче тельный пеского	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
28.	/	1 1	•			1						функции в изводных	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
					-						-	изводных х функций.	33, B1, B2, B3,
	Б) H В) В	айдит ычис	ге оп лить	шибь ь прс	су, уг эизво	кажи одну	ите и ю фу	испр ункци	авь и)	те е , ₌ (e: $\left(\frac{x-1}{x-1}\right)^2$	$a^{x} = xa^{x-1} .$	
29.	функции двух переменных. Запишите вид функции Лагранжа для функции и одного уравнения связи. Б) Приведите экономическую интерпретацию условного экстремума функции двух переменных. В) Найдите экстремум функции $Z = x + y^2 - 2y$ при									кции изи. условного	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;		
30.		вии ^х форм				прел	телен	ния вы	тбо	роч	ной	средней,	ОПКЗ 31, 32, 33, У1, У2,
50.	модн Б) Ч гене В) Д	ы и мого пр ральнано р	едиа оизс ой с оаспр	ны і ойдё среді оеде.	вари г с д ней, лени	ацио овер если ес пр	онно оител и уве оизна	го ряд выным эличит	(а. Гин Гь о — чі	тер бъё исл	вало м вы	ом для аборки? елок на	V3; B1, B2, B3;

		, , , , , , , , , , , , , , , , , , , ,
	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Найти выборочную среднюю, моду и медиану	
	вариационного ряда.	
31.	А) Сформулируйте определение дифференциала функции одной переменной, приведите графическую	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
	иллюстрацию.	
	Б) Найдите ошибку, укажите и исправьте её: «Для того,	
	чтобы функция была дифференцируема в точке	
	необходимо и достаточно, чтобы производная функции в этой точке равнялась нулю».	
	В) Вычислить дифференциал функции	
	$y = x \arccos \frac{x}{2} - \sqrt{4 - x^2}$ в точке $x = 1$.	
32.	А) Сформулируйте определения случайного,	ОПКЗ 31, 32, 33, У1, У2,
	достоверного и невозможного событий, определение	У3; В1, В2, В3;
	полной группы попарно несовместных	
	равновозможных событий, классическое определение вероятности. Перечислите свойства вероятности.	
	Б) Образуют ли полную группу попарно несовместных	
	равновозможных событий следующие события: Опыт –	
	бросание игральной кости; события: С1 – появление не	
	более двух очков; С2 – появление трех или четырех	
	очков; C_3 — появление не менее пяти очков? Почему?	
	В) В ящике 100 деталей, из них 10 бракованных. Наудачу	
	извлечены 4 детали. Найти вероятность того, что среди	
	извлеченных деталей ровно 2 годных.	
33.	А) Сформулировать определения статистического	ОПКЗ 31, 32, 33, У1, У2,
	распределения выборки, дискретного и непрерывного	У3; В1, В2, В3;
	вариационных рядов.	
	Б) Как по набору наблюдаемых значений определить,	
	каким является изучаемый признак: дискретным или	
	непрерывным?	
	В) Получена выборка значений: 2,1; 3,3; 3,4; 2,2; 1, 4,6; 5,3; 4,2; 6,2; 5,8; 7, 5,5; 4,4; 4,7; 1,3; 2,7; 2,5; 4, 3, 5, 4.	
	Лостроить ранжированный вариационный ряд.	
34.	А) Сформулируйте определения: локального экстремума,	ОПКЗ 31, 32, 33, У1, У2,
J- T .	локального минимума и локального максимума функции	У3; B1, B2, B3;
	одной переменной.	, , , , , , , , , , , , , , , , , , , ,
	Б) Найдите ошибку, укажите и исправьте её: Если на	
	промежутке производная функции равна нулю, то	
	функция монотонно возрастает на этом промежутке.	
	В) Найти точки локального экстремума функции $y = -xe^{-x}$	
	и определить их тип.	
35.	А) Сформулируйте определения равновозможных	ОПКЗ 31, 32, 33, У1, У2,
	событий, совместных событий, противоположных	У3; В1, В2, В3;
	событий, геометрическое определение вероятности. Б)	
	Образуют ли полную группу попарно несовместных	
	равновозможных событий следующие события: Опыт –	
	два выстрела по мишени; события: А – ни одного	
	попадания; Б – одно попадание; С – два попадания?	

	Попе	MX12												
	Почему? В) Устройство состоит из 5 элементов, из которых 3													
		изношены. При включении устройства случайным												
		образом включаются 2 элемента. Найти вероятность того,												
	что включенными окажутся неизношенные элементы.													
36.														ОПКЗ 31, 32, 33, У1, У2,
30.	А) Сформулировать определения частоты, относительной частоты, накопленной относительной частоты,													
		-												У3; В1, В2, В3;
		риче				-	-				•	•		
	-	-				-					_		ом для	
	_	ральн		-			•							
													елок на	
	фонд	овои	оир	жез	за кв	арта	л (′	ι _	<u>– чис</u>	СЛО	ИН	весто	ров)	
	x_i	0	1	2	3	4	5	6	5 7	8	9	1		
	·					_						0		
	n_i	14	9	7	3	2	1	6	5 3	4	2	2		
	_	6	7	3	4	3	0							
		-						III.	ирич	есь	ую	фун	кцию	
		редел												
37.								Ш	я стр	ОГО	во во	зрас	тающей и	ОПКЗ 31, 32, 33, У1, У2,
	стро													У3; В1, В2, В3;
													торые	
	_	го воз	-							-				
	B) H	айти	про	меж	утки	В03	раст	rai	и кин	1 уб	ыв	ания	функции	
	y = 2	2x - a	rctg	<i>x</i> .										
38.		форм			ге оп	реде	елен	IИ	я зав	иси	імы	іх и		ОПКЗ 31, 32, 33, У1, У2,
			-			_							едения	У3; В1, В2, В3;
		тий.				•					-			
	собы	тий.	•		•			•	•	•				
	Б) Яі	ЗЛЯЮ	гся л	іи за	вис	имы	ми с	Л	едую	ЩИ	ie c	обыт	- тыпо вит	
	брос	ание	мон	еты;	соб	ыти	я: А	_	поя	вле	ние	гер	5a, B –	
	появ.	ление	е ци	фры	? По	чем	y?					_		
	B) B	ероят	НОС	гь по	опад	ания	- ЯВЦ	ĮеJ	пь пе	рві	ЫМ	стре	лком равна	
		торы												
	одно	врем	енно	o. Ka	кова	а вер	тко	НС	- ость '	тог	о, ч	то р	овно два	
		тка п										•		
39.	A) C	форм	ули	руйт	ге оп	реде	елен	IИ:	я ген	epa	лы	юй і	1	ОПКЗ 31, 32, 33, У1, У2,
		рочн												У3; В1, В2, В3;
	ранж	иров	анн	ого і	- зари	ацис	ЭННС	Г(ряд	ιa.		•		
	_	-			-				-		тро	ены	полигон и	
			-		-						-		ому из этих	
	граф	-				-	-						-	
		редел				•			,					
		-				-	іени	ΙЙ	: 2, 3	, 3,	2,	1, 4,	5, 4, 6, 5, 6,	
		4, 1, 2												
		ациоі					-		•	•				
40.						реде	елен	Ш	я вы	пук	лой	íфуı	нкции,	ОПКЗ 31, 32, 33, У1, У2,
		и пер								-		1.		У3; В1, В2, В3;
		о грас					изво	од	ной	най	і́ди′	ге чи	ісло	
		_		_		_							боснуйте	
	ответ	-		~ 1111	, 1010	111	TJ			•	· (**	<i>,</i> . 0		
	O I DC	••												<u>l</u>

		
	4 3 2 1 0 1 2 3 4 -4 3 2 1 0 1 2 3 4	
	В) Найти промежутки выпуклости и вогнутости функции	
	$y = x^2 e^{-x}.$	
41.	А) Сформулировать определение суммы случайных	ОПКЗ 31, 32, 33, У1, У2,
	событий и теорему о сумме событий.	У3; В1, В2, В3;
	Б) Из полной колоды карт (52 листа) вынимается одна	
	карта. Рассматриваются следующие события: A – появление туза, B – появление карты красной масти, С –	
	появление туза, В – появление карты красной масти, С – появление бубнового туза, Д – появление десятки. В чем	
	состоит событие АВ? Пояснить, почему.	
	В) Вероятность попадания в цель первым стрелком равна	
	0,7, вторым 0,8, третьим 0,6. Стрелки выстрелили	
	одновременно. Какова вероятность того, что хотя бы два	
12	стрелка попадут в цель?	OFFICE 21 22 22 1/1 1/2
42.	А) Сформулировать определения моды и медианы	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
	непрерывной случайной величины. Поясните их геометрический смысл.	y 5; B1, B2, B5;
	Б) Как найти моду и медиану непрерывной случайной	
	величины?	
	В) Непрерывная случайная величина имеет плотность	
	распределения $f(x) = \left(\frac{-3}{4}\right)x^2 + \frac{9}{2}x - 6$ в интервале (2; 4).	
	Вне этого интервала $f(x) = 0$. Найти моду и медиану	
	случайной величины X.	
43.	А) Сформулируйте определения вертикальной, наклонной	ОПКЗ 31, 32, 33, У1, У2,
	и горизонтальной асимптот к графику функции.	У3; В1, В2, В3;
	Б) Найдите ошибку, укажите и исправьте её: Угловой	
	коэффициент наклонной асимптоты можно определить	
	из соотношения: $k = \lim_{x \to 0} \frac{f(x)}{x}$	
	$x \rightarrow 0$ x	
	В) Найти асимптоты к графику функции $y = \frac{x^3}{x^2+1}$.	
44.	А) Сформулируйте теорему о полной вероятности и	ОПКЗ 31, 32, 33, У1, У2,
	теорему Байеса.	У3; В1, В2, В3;
	Б) Образуют ли полную группу попарно несовместных	
	равновозможных событий следующие события: Опыт-	
	вынимание двух карт из колоды; события: А – появление двух красных карт; В–появление двух черных карт?	
	Почему?	
	В) В партии 100 телефонов, из которых 4 – бракованные.	
	Партия произвольно разделена на две равные части и	
	отправлена в 2 магазина. Какова вероятность того, что все	
1 =	бракованные телефоны достанутся одному магазину.	07772 21 22 22
45.	А) Сформулировать определения моды и медианы	ОПКЗ 31, 32, 33, У1, У2,
	дискретной случайной величины. Поясните их геометрический смысл.	У3; В1, В2, В3;
	теометрический смысл.	

				ду и г	медиа	ну ди	скретн	ой случайной	
		чины'			,				
								еет значения -4, 6,	
								ны соответственно	
),3; 0, чины		паит	случайной				
46.				тто о	тропо	поина	ПОКОП	ьных экстремумов	ОПКЗ 31, 32, 33, У1, У2,
40.								ыных экстремумов риведите	У3; B1, B2, B3;
				-			-	иведите Словия их	33, B1, B2, B3,
			лос ус зания.		и до	ciaio-	ппыс ус	лових их	
					і проі	ізволі	ной най	ідите число точек	
	-			-	-			те ответ.	
	JKCI	CWIYW	а фун ⁴ 3	ЩИИ	<i>y y</i> .	(··). O	occiryi	ire orber.	
			3		_				
		у	1						
	-4 -3	- <u>2</u> -1	y 1	2 3	4				
			-2-	X					
			-3						
	D) 11	<u> </u>	-4 -			. 1		$(1)^2$	
								$= (x-1)^2,$	
47								рой производной.	OFFICE D1 D2 D2 V1 V2
47.					-			Бернулли.	ОПКЗ 31, 32, 33, У1, У2,
								нство для	У3; В1, В2, В3;
							ачения	го исхода в схеме	
								по исхода в схеме пассической схеме	
	-	улли таний		ZWICIII	ириог	o next	ода в ка	ideen ieeron exeme	
				шико	в олн	оролн	ных лет	алей. Вероятность	
						-		ке детали окажутся	
								оятнейшее число	
	ящин	сов, в	котор	ых вс	е дета	али ст	андарт	ные?	
48.	A) C	форм	улиро	вать с	пред	елени	я мате	матического	ОПКЗ 31, 32, 33, У1, У2,
			-					цратического	У3; В1, В2, В3;
								личины.	
								ого ожидания.	
							кий смі		
								й величины.	
					на Л	каракт	геризуе	тся рядом	
		-	еления		40	50	<i>(</i> 0		
	x_i	10	20	30	40	50	60		
	p_i	0,2	0,3	0,2	0,1	0,0	0,02		
		4	6	0	5	3		на и пионование	
49.								ие и дисперсию.	ОПКЗ 31, 32, 33, У1, У2,
1 フ.								рывной функции в епрерывных в	V3; B1, B2, B3;
	точк	_	твсди.	ic cro	иства	функ	щии, н	прерывных в	3, 01, 02, 03,
			слите	Bce 31	темен	тарнь	ле фунт	кции, у которых	
		-				-		тком, и которых	
							тределе		
	В/ П	т айти <i>4</i>	обласа	гե ለጠታ	епепе	-	7. THE TITE	$f(x) = \frac{2x^2 + 3}{x\sqrt{x^2 + 16}}$	
	וו (ע	uriiri (JUJIAC.	יווף פיו	сделе	р кип	уупкци	$\frac{1}{x-\sqrt{x^2-16}}$	
								<u> </u>	1

	указать промежутки непрерывности и их тип (отрезок или интервал).	
50.	А) Сформулируйте локальную предельную теорему и следствие из неё. Б) Как выяснить, когда для вычислений по схеме Бернулли следует применять локальную формулу Муавра? В) В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.	ОПК3 31, 32, 33, У1, У2, У3; В1, В2, В3;
51.	А) Сформулируйте определения математического ожидания и дисперсии непрерывной случайной величины. Перечислите свойства дисперсии. Б) Какие числовые характеристики случайных величин являются неотрицательными? В) Дана функция плотности распределения случайной величины X: $f(x) = \begin{cases} 0, x < 0, \\ 0, 5x, 0 \\ 0, x > 2. \end{cases}$ ожидание и дисперсию.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
52.	 А) Сформулируйте определение непрерывной функции на отрезке. Перечислите свойства функций, непрерывных на отрезке. Б) Найдите ошибку, укажите и исправьте её: Если функция монотонна на отрезке, то внутри этого отрезка функция или непрерывна или может иметь точку разрыва второго рода. В) Найти промежутки непрерывности функции у = x²+1/x²-1. 	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
53.	А) Сформулируйте интегральную предельную теорему и следствие из неё. Б) Запишите условия, при которых для вычислений по схеме Бернулли следует применять интегральную формулу Муавра-Лапласа. В) В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что от 280 до 360 семей из 400 имеют холодильники.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
54.	А) Запишите определение случайной величины, её закона распределения и функции распределения. Б) В) Написать закон распределения дискретной случайной величины X — числа выпадений «герба» при четырёх бросаниях монеты. Построить ряд распределения и функцию распределения.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
55.	А) Сформулируйте определение ранга матрицы, перечислите его свойства. Б) Как меняется ранг матрицы при выполнении над ней элементарных преобразований? В) Найти ранг матрицы: $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 4 & 3 & -3 \end{bmatrix}$	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;

56.	А) Сформулировать теорему Пуассона и следствие из неё. Б) Записать условия, при которых для вычислений по схеме Бернулли следует применять формулу Пуассона. В) В банк отправлено 4 000 пакетов денежных знаков. Вероятность того, что пакет содержит недостаточное или избыточное число денежных знаков, равна 0,0001. Найти вероятность того, что при проверке будет обнаружено не	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
	более 3-х ошибочно укомплектованных пакетов.	
57.	А) Запишите определение дискретной случайной величины, ряда распределения, полигона распределения. Б) Между какими величинами устанавливает взаимосвязь закон распределения случайной величины? В) В ящике 6 белых и 4 черных шара. Из него 5 раз подряд извлекают шар, причем каждый раз вынутый шар возвращают в ящик и шары перемешивают. Приняв за случайную величину X число извлеченных белых шаров, составить закон распределения этой величины, построить полигон распределения.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
58.	А) Сформулируйте определения вектора, скалярного и векторного произведений векторов, линейно независимой системы векторов. Перечислите свойства векторного произведения. Б) Найдите ошибку, укажите и исправьте её: «Если 3 вектора в трехмерном пространстве лежат в одной плоскости, то определитель, составленный из их координат, отличен от нуля». В) Найти орт вектора $\vec{a} = (1, -1, 5, -5)$.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
59.	А) Сформулируйте определения: дробно-рациональной функции, правильной и неправильной дробнорациональных функций. Запишите интегралы от простейших дробно-рациональных функций. Б) Дан интеграл $\int \frac{d^3x}{x^2+1(x+2)}$. Как будет выглядеть разложение подынтегральной функции на сумму простых дробей? Почему? В) Вычислить $\int \frac{(x+1)dx}{x^2-x}$.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;
60.	А) Запишите определение случайной величины, её закона распределения и функции распределения. Б) Между какими величинами устанавливает взаимосвязь функция распределения случайной величины? В) Составить закон распределения дискретной случайной величины X — число выпадений «герба» при четырёх бросаниях монеты. Построить ряд распределения и функцию распределения.	ОПКЗ 31, 32, 33, У1, У2, У3; В1, В2, В3;

ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

(Шкалы оценивания)

Результаты выполнения обучающимся заданий на зачете оцениваются по шкале на экзамене - по пятибалльной шкале.

В основе оценивания лежат критерии порогового и повышенного уровня характеристик компетенций или их составляющих частей, формируемых на учебных занятиях по дисциплине **Математика** (Таблица 2.5 рабочей программы дисциплины).

«Отлично» (5) — оценка соответствует повышенному уровню и выставляется обучающемуся, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.

«Хорошо» (4) — оценка соответствует повышенному уровню и выставляется обучающемуся, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос или выполнении заданий, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

«Удовлетворительно» (3) — оценка соответствует пороговому уровню и выставляется обучающемуся, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, демонстрирует недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

«**Неудовлетворительно»** (2) — оценка выставляется обучающемуся, который не достигает порогового уровня, демонстрирует непонимание проблемы, не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

Рекомендуемая контрольная работа к зачету по разделу 1 «Линейная алгебра»

Задание № 1

Вычислите результат операций над матрицами (при оформлении вычислений введите буквенные Вычислите результат операции над матрицами (при оформыентя вы песения). обозначения для исходных и преобразованных матриц, разбейте вычисления на действия). $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ 0 & 17 \end{bmatrix}^T - 2 \cdot \begin{bmatrix} -1 & 1 \\ 0 & 3 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} -1 & -2 & -3 \\ 6 & 5 & 4 \\ 2 & 0 & 1 \end{bmatrix}^T$

$$0. \quad \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ 0 & 17 \end{bmatrix}^T \quad -2 \cdot \begin{bmatrix} -1 & 1 \\ 0 & 3 \end{bmatrix}^2$$

1.
$$\begin{vmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{vmatrix}^2 - \begin{pmatrix} -1 & -2 & -3 \\ 6 & 5 & 4 \\ 0 & 1 & 2 \end{vmatrix}^T$$

$$\begin{bmatrix}
 \begin{bmatrix} 4 & 0 & -3 & 5 \\ 2 & 7 & 0 & 2 \end{bmatrix} & \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}^{T} & \begin{bmatrix} 1 & 4 & -1 \\ 4 & 0 & 1 \end{bmatrix} \\
 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix} & \begin{bmatrix} 1 & 4 & -1 \\ 1 & 5 & 0 \\ 3 & 6 & -5 \end{bmatrix}
\end{bmatrix}$$

$$\begin{bmatrix}
 \begin{bmatrix} 3 & 1 & 2 & 6 \\ 2 & 7 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 2 & 4 & -5 \end{bmatrix} & \begin{bmatrix} 1 & 5 & 0 \\ 3 & 6 & -5 \end{bmatrix}$$

6.
$$\binom{1}{1}$$
 $\cdot (2-4 6) - 2 \cdot \begin{pmatrix} 2 & -5 \\ 7 & -9 \\ -20 & 0 \end{pmatrix}^T$

7.
$$\begin{pmatrix} 0 \\ 4 \\ 10 \end{pmatrix}$$
 \cdot $\begin{pmatrix} 1 - 2 & 5 \end{pmatrix} + 7 \cdot \begin{pmatrix} 0 & 1 & 3 \end{pmatrix}^T$

8.
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -5 & 1 \\ 2 & 1 & 5 \end{pmatrix}^{T} \cdot \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 5 & 3 \end{pmatrix} - \frac{2}{5} \cdot \begin{pmatrix} 10 & -20 \\ 30 & -15 \\ -25 & 10 \end{pmatrix}$$

$$\mathbf{9.} \quad \begin{pmatrix} 1 & 2 \\ -10 \\ 5 & 3 \end{pmatrix}^{T} - \begin{pmatrix} -10 & 6 & 8 \\ 0 & -3 & 4 \end{pmatrix} \cdot \begin{vmatrix} 0 & 1 & 3 \\ 1 & 5 & 1 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

Задание № 2

Вычислите определитель.

Вариант	Определитель	Вариант	Определитель
0.	2 1 -1 5 3 2 4 1 4 3 5 -1 -1 2 3 4	1.	3 2 5 3 2 3 6 5 1 6 -9 -11 4 1 4 2
2.	1 -2 3 2 2 1 -3 4 3 4 5 -1 4 3 1 3	3.	2 3 1 3 4 6 3 -5 6 9 5 -7 8 9 7 9
4.	1 2 1 4 -1 3 5 2 3 5 1 -3 2 4 3 1	5.	3 4 3 6 9 8 5 9 3 8 7 16 6 6 3 5
6.	3 2 1 2 5 4 3 4 7 4 1 2 2 7 3 4	7.	5 3 2 4 4 2 1 3 -2 2 3 2 1 1 7 2
8.	1 4 -1 2 2 0 3 1 -3 5 4 2 1 6 4 3	9.	2 5 1 2 -1 2 3 1 3 4 1 2 2 3 3 7

Задание № 3

Найдите решение линейной системы методом Гаусса, выполнив преобразование расширенной матрицы к ступенчатому виду. Сделайте проверку результата или вывод о несовместности системы. Запишите ответ в двух формах: а) значения решений, б) вектор-столбец решения.

Вариант	СЛАУ	Вариант	СЛАУ
0.	$\begin{cases} 2x_1 + 3x_2 - x_3 - 7x_4 = -4, \\ -2x_1 - 5x_2 + 3x_3 + 5x_4 = 4, \\ 4x_1 + 3x_2 + x_3 - 17x_4 = -8, \\ -4x_1 - 7x_2 + 3x_3 + 13x_4 = 8, \end{cases}$	1.	$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = -2, \\ 2x_1 + 2x_2 + x_4 = -9, \\ 2x_1 + 2x_3 + x_4 = 23, \\ x_1 + 3x_2 + 3x_3 + 3x_4 = 21, \end{cases}$
2.	$\begin{cases} 3x_1 + 8x_2 + x_3 + 5x_4 = 19, \\ 4x_1 + 17x_2 - 2x_3 + 3x_4 = 25, \\ x_1 - 3x_2 + 2x_3 + x_4 = 4, \\ -2x_1 - 6x_2 + 3x_3 + 7x_4 = -6, \end{cases}$	3,	$\begin{cases} 3x_1 + x_2 - 2x_3 - 7x_4 = 9, \\ -x_1 + 6x_2 + 7x_3 + 15x_4 = 16, \\ x_1 + 5x_2 + 4x_3 + 7x_4 = 17, \\ 3x_1 + 9x_2 + 6x_3 + 9x_4 = 33, \end{cases}$
4.	$\begin{cases} x_1 + 4x_2 + 6x_3 + 6x_4 = 0, \\ -x_1 + 6x_2 + 4x_3 + 9x_4 = -2, \\ 2x_1 - 2x_2 + 2x_3 - 3x_4 = 2, \\ 5x_1 + 10x_3 = 4, \end{cases}$	5.	$\begin{cases} x_1 + 2x_2 + 2x_3 + 11x_4 = 5, \\ 3x_1 - 4x_2 - x_3 + 8x_4 = -9, \\ 5x_1 + 2x_2 + x_3 + 18x_4 = -1, \\ 2x_1 - x_2 - 3x_3 - 8x_4 = -9, \end{cases}$
6.	$\begin{cases} x_1 - 2x_2 + x_3 - 7x_4 = 6, \\ 3x_1 + x_2 + x_3 - 5x_4 = -4, \\ 2x_1 + 2x_2 + 3x_3 - 3x_4 = -15, \end{cases}$	7.	$\begin{cases} x_1 - x_2 + x_3 + 6x_4 = 3, \\ 5x_1 + 3x_2 + x_3 + 2x_4 = 3, \\ 7x_1 + 3x_2 - 3x_3 = 1, \\ x_1 + 2x_2 + 2x_3 - x_4 = 1, \end{cases}$

Задание № 4

Для модели линейного межотраслевого баланса экономической системы известны матрица прямых затрат A и вектор конечного потребления $^{\mathcal{Y}}$.

Установите, что матрица A является продуктивной, и найдите матрицу полных затрат.

Найдите вектор валового выпуска $^{\mathcal{X}}$ с помощью матрицы полных затрат. Выполните проверку.

$N_{\underline{0}}$	данные		Мо рого			
вар.	A		№ вар.	A		
2.	$ \begin{pmatrix} 0,3 & 0,4 & 0,1 \\ 0,3 & 0,2 & 0,3 \\ 0,1 & 0,2 & 0,5 \end{pmatrix} $	(100 200 300	3.	$ \begin{pmatrix} 0.2 & 0.4 & 0.3 \\ 0.3 & 0.2 & 0.3 \\ 0.5 & 0.2 & 0.2 \end{pmatrix} $	(150 200 200	
4.	$ \begin{pmatrix} 0.4 & 0.1 & 0.25 \\ 0.1 & 0.2 & 0.2 \\ 0.4 & 0.2 & 0.2 \end{pmatrix} $	$ \begin{pmatrix} 160 \\ 221 \\ 251 \end{pmatrix} $	5.	$ \begin{pmatrix} 0.1 & 0.1 & 0.2 \\ 0.1 & 0.2 & 0.1 \\ 0.4 & 0.2 & 0.2 \end{pmatrix} $	$\begin{pmatrix} 160 \\ 200 \\ 250 \end{pmatrix}$	
6.	$ \begin{pmatrix} 0.4 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.1 \\ 0.2 & 0.3 & 0.3 \end{pmatrix} $	$ \begin{pmatrix} 160 \\ 150 \\ 230 \end{pmatrix} $	7.	$ \begin{pmatrix} 0.1 & 0.1 & 0.2 \\ 0.2 & 0.2 & 0.1 \\ 0.4 & 0.2 & 0.2 \end{pmatrix} $	$\begin{pmatrix} 160 \\ 200 \\ 250 \end{pmatrix}$	
8.	$ \begin{pmatrix} 0,1 & 0,2 & 0,2 \\ 0,2 & 0,2 & 0,1 \\ 0,3 & 0,2 & 0,2 \end{pmatrix} $	(150 190 245	9.	$ \begin{bmatrix} 0.2 & 0.2 & 0.2 \\ 0.2 & 0.1 & 0.1 \\ 0.2 & 0.01 & 0.11 \end{bmatrix} $	$ \begin{pmatrix} 310 \\ 210 \\ 190 \end{pmatrix} $	
10.	$ \begin{pmatrix} 0,3 & 0,4 & 0,1 \\ 0,3 & 0,2 & 0,3 \\ 0,1 & 0,2 & 0,5 \end{pmatrix} $	$ \begin{pmatrix} 310 \\ 210 \\ 190 \end{pmatrix} $	11.	$ \begin{pmatrix} 0.1 & 0.1 & 0.2 \\ 0.1 & 0.2 & 0.2 \\ 0.4 & 0.2 & 0.2 \end{pmatrix} $	$\begin{pmatrix} 160 \\ 221 \\ 251 \end{pmatrix}$	

Рекомендуемая контрольная работа к зачету по разделу 2 «Математический анализ»

Залание № 1

Для данной функции f(x):

- а) проведите исследование, оформив результаты в виде таблицы;
- б) составьте уравнение касательной к графику в точке с абсциссой x_0 ;
- в) схематично постройте на одном рисунке график и касательную в заданной точке;
- Γ) найдите наибольшее и наименьшее значения функции на отрезке [a;b];

д) вычислите эластичность функции в точке с абсциссой
$$x_0$$
 1. $f(x) = 2x^3 - 9x^2 + 12x - 2$; $x_0 = 2$;

1.
$$f(x) = 2x^3 - 9x^2 + 12x - 2$$
; $x_0 = 2$; $[a; b] = [-1; 3]$.

2.
$$f(x) = \frac{x^2}{x-1}$$
; $x = 2$

[a; b] = [1,5;3].

3.
$$f(x) = \frac{x^2 - 2x + 3}{x + 2}$$
; $x_0 = 1$; $[a; b] = [-2; 6]$. 4. $f(x) = \frac{2}{x^2 + 4}$; $x_0 = 1$;

$$f(x) = \frac{2}{x^2 + 4}$$
; $x_0 = 1$;

$$[a; b] = \begin{bmatrix} -1; 1 \end{bmatrix}.$$

$$[a; b] = \begin{bmatrix} -\frac{x}{2} \end{bmatrix}.$$

5.
$$f(x) = x^3 - 5x^2 + 16$$
; $x_0 = 2$; $[a; b] = [-2; 6]$. $f(x) = \frac{x}{x - 2}$; $x_0 = 3$;

$$f(x) = \frac{x}{x-2}$$
; $x_0 = 3$

7.
$$f(x) = x^4 - 2x^2 + 3$$
; $x_0 = 1$; $[a; b] = [-3, 2]$.

[a; b] = [0; 1,5].
8.
$$f(x) = \frac{x^3}{x^2 - 3}$$
; $x_0 = 2$; [a; b] = [-1; 1].

$$x^2-3$$

9.
$$f(x) = x^4 - 4x^3 + 6x^2$$
; $x_0 = 1$; $[a; b] = [-1; 1]$.

10.
$$f(x) = \frac{x^3}{x^2 + 1}$$
; $x_0 = 1$; $[a; b] = [-1; 1]$.

Задание № 2

Схематично постройте на плоскости семейство линий уровня функции (предварительно оцените и схематично изобразите область определения функции, оцените область значений функции).

-
$$z = \sqrt{1 - x^2 - y^2}$$
 - $z = \ln(x^2 + y)$ - $z = y/\sqrt{x}$ - $z = \sqrt{y + x}$ - $z = \sqrt{y - \sqrt{x}}$

$$z = y/\sqrt{x}$$
 — $z = \sqrt{y+x}$

$$= \sqrt{y - \sqrt{x}}$$

$$= z = \ln(x + y)$$

$$z = 1/\sqrt{y-\sqrt{x}}$$
 $z = x^2$

$$-z = \ln(x+y)$$
 $-z = 1/\sqrt{y-\sqrt{x}}$ $-z = x^2y$ $-z = \ln(y/\sqrt{x})$ $-z = \sqrt{x^2+y^2-1}$

Залание № 3

Для функции двух переменных определите: a) точки экстремума; б) градиент в точке (1;1) .

$$0. \quad z = x^2 - xy + y^2 + 3x - 2y + 1$$

1.
$$z = x^2 + y^2 - xy + x + y$$

1.
$$z = x^2 + y^2 - xy + x + y$$
 2. $z = x^2 + 2xy - 4x + 8y$

3.
$$z = -x^2 - xy + y^2 + 3x + 6y$$

4.
$$z = 2xy - 3x^2 - 2y^2 + 10$$
 5. $z = 2xy - 4x - 2y$

5.
$$z = 2xy - 4x - 2y$$

6.
$$z = x^2 + xy + y^2 + x - y + 1$$
 7. $z = x^2 + 2x + y^2 + 2xy$ 8. $z = 4(x - y) - x^2 - y^2$

7.
$$z = x^2 + 2x + y^2 + 2xy$$

8.
$$z = 4(x - y) - x^2 - y^2$$

9.
$$z = 7x^2 - 6xy + 3y^2 - 4x + 7y - 12$$

Задание № 4

Вычислите интегралы методом замены переменной (используйте внесение выражения под знак дифференциала и подстановку).

$$0) \int \frac{\cos x dx}{4 + \sin^2 x}; \quad 1) \frac{\sin x dx}{\sqrt[3]{\beta + 2\cos x}}; \quad 2) \int \frac{3^{\arctan x}}{1 + x^2} dx; \quad 3) \int \frac{e^x dx}{\sqrt{e^{2x} + 4}};$$

$$4) \int \frac{3x dx}{\sqrt{1 + 4x^2}}; \quad 5) \int \frac{\sqrt{2 + \ln x}}{x} dx; \quad 6) \int \frac{\sqrt[3]{\arcsin x}}{\sqrt{1 - x^2}} dx;$$

$$\sin 2x \qquad \qquad \sin 2x \qquad \qquad \cos 2x \qquad \qquad \cos 2x \qquad$$

Задание № 5

Вычислите интегралы от дробно-рациональных выражений, разложив подынтегральную дробь в сумму простых дробей.

$$x^{2} + 13x + 5
0) \int (x^{2} + 10)(x + 5) dx;$$

$$x^{2} + 4x - 5
2) \int (x^{2} + 3)(x + 1) dx;$$

$$x^{2} + 4x - 5
4) \int (x^{2} + 4)(x - 2) dx;$$

$$x^{2} - 7x + 12
(x^{2} + 2)(x - 3) dx;$$

$$x^{2} - 7x + 12
(x^{2} + 2)(x - 3) dx;$$

$$5) \int (x^{2} + 5)(x + 3) dx;$$

$$x^{2} - 5x + 19
(x^{2} + 5)(x + 2) dx;$$

$$x^{2} - 13x - 26
8) \int (x^{2} + 8)(x - 5) dx;$$

$$9) \int (x^{2} + 9)(x + 4) dx$$

Задание № 6

Найдите общее решение или общий интеграл дифференциального уравнения с разделяющимися переменными, а затем найдите частное решение или частный интеграл при заданном начальном значении $y(x_0) = y_0$.

0.
$$xydx + \sqrt{1 - x^2} dy = 0$$
, $y(0) = 1$
1. $y' + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0$, $y(0) = 0$
2. $y' = \frac{1 + y^2}{1 + x^2}$, $y(0) = 1$
3. $y' = \frac{1 - x^2}{xy}$, $y(1) = 1$
4. $xdy + ydx = y^2 dx$, $y(1) = 2$
5. $(xy^2 + x)dx + (y - x^2y)dy = 0$, $y(2) = 0$
6. $e^{-y} dx - e^{-x^2} ydy = 0$, $y(1) = 0$
7. $(1 + x^2) dy + ydx = 0$, $y(1) = 1$
8. $xdy - ydx = 0$, $y(1) = 2$
9. $(1 - x)dx - ydy = 0$, $y(0) = 1$

Задание № 7

Найдите определенный интеграл с помощью формулы Ньютона-Лейбница, вычислив первообразную интегрированием по частям

1.
$$\int_{0}^{1} (2-3x)e^{x}dx$$
 2.
$$\int_{0}^{\pi/4} x \sin(2x)dx$$
 3.
$$\int_{1}^{e} x^{2} \ln x dx$$
 4.
$$\int_{1}^{e/3} x \ln(3x)dx$$
 5.
$$\int_{0}^{1} xe^{2x-1}dx$$

$$6. \quad \int_{0}^{\pi/4} \frac{x dx}{\cos^2 x}$$

$$7. \quad \int_{\pi/4}^{\pi/2} \frac{x dx}{\sin^2 x}$$

$$8. \int_{1}^{e} \frac{\ln x dx}{\sqrt{x}}$$

$$9. \quad \int_{0}^{1} xarctgxdx$$

6.
$$\int_{0}^{\pi/4} \frac{x dx}{\cos^{2} x}$$
7.
$$\int_{\pi/4}^{\pi/2} \frac{x dx}{\sin^{2} x}$$
8.
$$\int_{1}^{e} \frac{\ln x dx}{\sqrt{x}}$$
9.
$$\int_{0}^{\pi/2} x \arctan(2x) dx$$

Задание № 8

Схематично изобразите фигуру, ограниченную линиями, и вычислите ее площадь

0.
$$x = 1$$
, $x = 2$, $y = 0$, $xy = 1$.

1.
$$y = \frac{1}{\sqrt{x+1}}, \quad x = -\frac{3}{4}, \quad x = 0, \quad y = 1.$$
3. $y = \sin x, \quad y = \frac{2x}{\pi}.$

2.
$$y = \cos x, y = x + 1, y = 0$$
.

3.
$$y = \sin x, y = \frac{2x}{\pi}$$
.

4.
$$y = -\sqrt{5}$$
, $x = 1$, $y = 0$

5.
$$y^2 = 6x$$
, $y = \sqrt{6x^2}$.

4.
$$y = -\sqrt{x}$$
, $x = 1$, $y = 0$.
6. $y = \frac{1}{1+x^2}$, $y = 0$, $x = 0$, $x = 1$.

7.
$$y = x^2 - 2x + 1$$
, $x = 2$, $y = 0$.

8.
$$y = 2x - x^2$$
, $y = 0$.

9.
$$y = \ln x, x = \sqrt{8}, x = \sqrt{15}, y = 0.$$

Контрольная работа по разделам 3,4 «Теория вероятностей и математическая статистика»

- 1. Вероятность попадания в цель первым стрелком равна 0,7, а вторым -0,75. Стрелки выстрелили одновременно. Какова вероятность того, что: а) один из них попадет в цель, а другой не попадет, б) будет не менее одного попадания, в) оба промахнутся?
- 2. На складе продукция 3-х фабрик. Продукция I фабрики составляет 20%, II 46%, III 34%. Средний процент нестандартных изделий для I фабрики равен 3%, для II -2%, для III -1%. Найдите вероятность того, что наугад взятое изделие: а) окажется стандартным; б) изготовлено на І фабрике, если оно нестандартно.
- 3. Студент знает 20 из 25 вопросов программы. Найдите вероятность того, что студент знает: а) все 3 вопроса предложенные ему экзаменатором, б) 2 вопроса из предложенных трех.
- 4. На плоскости 2 концентрических круга, радиусов 5 и 10 см. Какова вероятность того, что точка, брошенная наудачу в большой круг, не попадет в малый круг?
- 5. 80% изделий предприятия изделия высшего сорта. Некто приобрел 6 изделий этого предприятия. Чему равна вероятность того, что: а) 4 из них высшего сорта; б) не менее 4 высшего сорта. Сколько требуется купить изделий, чтобы с вероятностью не менее 0,8 среди них было хотя бы одно изделие высшего сорта?
- 6.1. Посажено 400 деревьев. Вероятность того, что отдельное дерево приживется, равна 0,8. Найдите вероятность того, что приживется: а) более 250 деревьев; б) ровно 250 деревьев. Каковы будут среднее и наиболее вероятное количества прижившихся деревьев?
- 6.2. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найдите вероятность того, что магазин получит менее 2-х разбитых бутылок.
- 7. Непрерывная случайная величина, задана функцией распределения $F(x) = \{x \in \mathbb{R} \mid x \in \mathbb{R} \mid x \in \mathbb{R} \}$ Найдите: а) плотность распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(-1 < X < 3).
- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], σ [X]; в) моду, г) P(-1 \leq X<1,5) для дискретной случайной величины, заданной законом распределения:

X	0	1	2.
1.		-	_
l P	0,25	0.5	0.25
-	-,	- ,-	-,

- 9. Производится расфасовка некоторого вещества. Стандартной считается порция 500 г. Случайные ошибки взвешивания подчинены нормальному закону со СКО $\sigma = 12$ г. Запишите вид функции плотности распределения $\sigma = 12$ г. Запишите вид функции плотности вид распределения $\sigma = 12$ г. Запишите вид распределения $\sigma =$
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 2 семестра получена выборка сведений о посещаемости студентов (X) и их оценок за вторую контрольную работу (Y).

\mathbf{v}	1	1	Λ.	0	Ų,	ń	Λ	Λ	Λ	0	Λ	Λ	Λ	Λ	Λ	Λ	1	Λ	Λ	Λ	Λ	1	1
Λ	1	1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	U	U	b	U	†	1
Y	0	0,9	3,8	4,9	5	1	4,1	5	1	2,3	1	1,4	0,7	2,8	4,3	1,3	1	2,7	2,5	3,9	4,2	0,5	3,3

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна: 0,95 для первого сигнализатора и 0,9 для второго. Какова вероятность того, что: а) при аварии сработает только один сигнализатор, б) сработает не менее одного сигназизатора, в) оба сработают?
- 2. Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, второй 84%. Найдите вероятность того, что наудачу взятая с конвейера деталь: а) оказалась отличного качества, б) произведена первым автоматом, если она отличного качества.
- 3. Из колоды в 36 карт наугад выбраны 3 карты. Какова вероятность того, что среди них окажется: а) ровно 2 туза, б) только дамы.
- 4. На отрезок длиной 10 см наудачу поставлены 2 точки. Какова вероятность того, что расстояние между этими точками не более 5 см?
- 5. Средний процент нарушений работы телевизора в течение гарантийного срока 10%. Найдите вероятность того, что из 8 проданных телевизоров гарантийный срок не выдержат: а) не более 1; б) ровно 1. Сколько требуется продать телевизоров, чтобы с вероятностью не менее 0,5 среди них был хотя бы один, сломавшийся в течение гарантийного срока?
- 6.1. В партии 800 изделий. Вероятность того, что отдельное изделие окажется высшего сорта, равна 0,7. Найдите вероятность того, что количество изделий высшего сорта будет: а) от 600 до 700; б) ровно 700. Каковы будут среднее и наиболее вероятное количества изделий высшего сорта?
- 6.2. Учебник издан тиражом 100 000 экземпляров. Вероятность того, что он сброшюрован неправильно, равна 0,0001. Найдите вероятность того, что тираж содержит ровно 5 бракованных книг.
- 7. Непрерывная случайная величина, задана плотностью распределения $P^{(x)} = \begin{cases} x 0.5, x \in (1, 2), \\ 0, x \notin (1, 2). \end{cases}$ Найдите: а) функцию распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(0 < X < 1.5).
- 8. Изобразите полигон распределения, найдите: а) функцию расп

ределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$;

30

 Γ) $P(5 \le X < 25)$ для дискретной случайной величины, заданной законом распределения:

9. При производстве химических емкостей стандартным считается объем 100мл. Случайные ошибки производства подчинены нормальному закону со СКО σ =2мл. Запишите вид функции плотности распределения f(x) , схематично постройте ее график. Найдите: a) вероятность того, что абсолютная погрешность производства не превысит 1мл; б) промежуток, в котором практически наверняка содержатся объемы пробирок; в) вероятность того, что объем пробирки окажется в промежутке от 97мл до 101мл; г) какую абсолютную погрешность производства можно гарантировать с вероятностью не менее 0,95.

10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 3 семестра получена выборка сведений о посещаемости студентов (X) и их экзаменационных оценок (У).

X	2	5	0	0	0	0	0	0	3	0	1	0	0	0	1	2	5	1	0	0	6	3	2	0	0	1	1
Y	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	5	4	2	4	4	5	3	4

1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,

2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

Вариант 2

- 1. Студент разыскивает нужный ему пример на двух сайтах. Вероятности того, что пример есть на сайтах, равны: 0,6 – для первого, 0,8 – для второго. Найдите вероятность того, что пример содержится: а) хотя бы на одном сайте, б) на обоих сайтах, в) только на одном сайте.
- 2. Некто заблудился в лесу и вышел на поляну. От поляны есть 3 дороги. Вероятности выхода из леса за 1 час для дорог соответственно равны: 0,6; 0,3; 0,1. Чему равны вероятности того, что, выбирая дорогу наугад: а) заблудившийся вышел из леса за 1 час; б) заблудившийся пошел по первой дороге, если известно, что он вышел из леса за 1 час.
- 3. По условию лотереи «Спортлото 6 из 45» участник лотереи, угадавший 4, 5 или 6 видов спорта из отобранных при случайном розыгрыше 6 видов спорта из 45, получает денежный приз. Найдите вероятность того, что будут угаданы: а) все 6 цифр; б) 4 цифры.
- 4. Перпендикулярно фарватеру установлен один ряд мин, расстояния между которыми равны 100 метров. Найдите вероятность того, что судно с наибольшей шириной 30 метров пройдет линию заграждения без столкновения с миной.
- 5. Вероятность выигрыша по лотерейному билету равна 0,1. Приобретено 4 билета. Чему равна вероятность того, что: а) 2 из них выигрышные; б) не менее 2 выигрышные. Сколько требуется купить билетов, чтобы с вероятностью не менее 0,9 среди них был хотя бы один выигрышный?
- 6.1. Вероятность того, что зашедший в ресторан посетитель сделает заказ, равна 0,8. Определите вероятность того, что из 100 зашедших сделают заказ: а) не менее 75, б) ровно 50 Каковы будут среднее и наиболее вероятное количества сделавших заказ посетителей?
- 6.2. Среди семян ржи имеется 0,4% семян сорняков. Какова вероятность при случайном отборе 5000 семян обнаружить 5 семян сорняков?
- 7. Непрерывная случайная величина, задана функцией распределения $\mathcal{F}(x) = \begin{cases} 2 & x \leq 2 \\ x \leq 2 & 2 \end{cases} \quad 2 < x \leq 3.$

$$F(x) = \begin{cases} 0, & x \le 2, \\ (x - 2)^2, & 2 < x \le 3, \\ 1, & x > 3. \end{cases}$$

Найдите: а) плотность распределения p(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(-1 < X < 3).

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(-1 \le X < 1)$ для дискретной случайной величины, заданной законом распределения:
- 9. Производится расфасовка некоторого вещества. Стандартной считается порция $300 \, \Gamma$.

 Случайные ошибки взвешивания подчинены нормальному закону со СКО $\sigma = 5 \, \Gamma$.

 Запишите вид функции плотности распределения f(x), схематично постройте ее график.

 Найдите: а) вероятность того, что абсолютная погрешность взвешивания не превысит $6 \, \Gamma$; 6) промежуток, в котором практически наверняка содержатся порции вещества; в) вероятность того,

что порция вещества окажется в промежутке от 310 г до 315 г; г) какую абсолютную погрешность

2

10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 4 семестра получена выборка сведений об оценках за вторую контрольную работу (X) и их оценок на экзамене (У).

взвешивания можно гарантировать с вероятностью не менее 0,9.

	10110	it na o	NOGI	VI O I I	- 	<i>)</i> ·																	
X	5	1,9	0	2	4	2,3	3,3	2	3,6	2	5	3,1	1	1,9	1,8	1,7	1,1	2,4	3,9	4	3	3,7	4,2
У	5	4	3	3	5	4	4	3	4	4	5	3	2	4	4	3	2	5	5	5	4	5	4

- 1) найдите вид линейной регрессии Y на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятности попадания в цель при стрельбе из трех орудий равны 0,75; 0,8; 0, 85. Производится по одному выстрелу одновременно. Цель будет поражена, если в нее попадут не менее двух орудий. Найти вероятность: а) поражения цели; б) хотя бы одного попадания, в) только одного попадания.
- 2. Лампы изготавливаются на трех заводах. Первый завод производит 45% общего количества ламп, причем дает 70% стандартных ламп. Второй завод производит 40% ламп, 80% его продукции стандартные лампы. Третий завод дает 15% ламп, причем 81% стандартных. На базу поступает продукция всех трех заводов. Какова вероятность того, что купленная на базе лампа: а) окажется стандартной, б) выпущена вторым заводом, если она оказалась стандартной?
- 3. К экзамену подготовлены 30 теоретических вопросов и 50 задач. Определить вероятность того, что студент: а) получит «отлично» для этого требуется правильно ответить на 2 вопроса и решить 3 задачи, выбранных случайным образом, б) не ответит на оба теоретических вопроса, но решит все 3 задачи, если студент выучил 20 вопросов и умеет решать 30 задач.
- 4. В квадрат со стороной а вписан круг. Найдите вероятность того, что точка, брошенная наудачу в квадрат, окажется внутри круга.
- 5. На 100 лотерейных билетов приходится 10 выигрышных. Приобретено 5 билетов. Какова вероятность выигрыша: а) хотя бы по одному билету, б) по 3 билетам? Сколько требуется купить билетов, чтобы с вероятностью не менее 0,5 среди них был хотя бы один выигрышный?
- 6.1. Известно, что 30% призывников имеют 27 размер обуви. В часть прибыло 200 новобранцев Определите вероятность того, что из 200 прибывших в часть новобранцев 27 размер обуви имеют: а) не менее 50, б) ровно 100. Каковы будут среднее и наиболее вероятное количества призывников с 27 размером обуви?
- 6.2. Завод отправил 5000 доброкачественных изделий. Вероятность того, что изделие в пути испортится равно 0,0002. Найдите вероятность того, что в пути будет повреждено не более одного изделия.
- 7. Непрерывная случайная величина, задана плотностью распределения

$$p(x) = \begin{cases} 1 - |x|, & x \in (-1, 1], \\ 0, & x \notin (-1, 1] \end{cases}$$

Найдите: а) функцию распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(0 < X < 1).

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(0 \le X < 3)$ для дискретной случайной величины, заданной законом распределения:
- 9. Производится расфасовка некоторого вещества. Стандартной считается порция 100 г. Случайные ошибки взвешивания подчинены нормальному закону со СКО (= 2 г. Запишите вид функции плотности распределения f(x), схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность взвешивания не превысит 1 г; б) промежуток, в котором практически наверняка содержатся порции вещества; в) вероятность того, что порция вещества окажется в промежутке от 98 г до 100 г; г) какую абсолютную погрешность взвешивания можно гарантировать с вероятностью не менее 0.9.
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 3 семестра получена выборка сведений об оценках за вторую контрольную работу (X) и их оценок на экзамене (У).

X	0	0,9	3,8	4,9	5	1	4,1	5	1	2,3	1	1,4	0,7	2,8	4,3	1,3	1	2,7	2,5	3,9	4,2	0,5	3,3	1,9
У	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	4	5	4	2	4

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятность получить высокие дивиденды по акциям на первом предприятии 0,2, на втором 0,35, на третьем 0,15. Определите вероятность того, что акционер, имеющий акции всех предприятий, получит высокие дивиденды: а) на всех предприятиях; б) хотя бы на одном предприятии, в) только на одном предприятии.
- 2. Команда стрелков состоит из 5 человек, они разделены на 2 группы: в первой группе трое, каждый из них попадают в цель с вероятностью 0,8, во второй двое, из вероятности попадания 0,6. Наудачу из команды выбирается стрелок, он производит выстрел. Какова вероятность, что: а) стрелок попадет в цель, б) стрелок оказался из второй группы, если он попал в цель?
- 3. В коробке 5 красных, 3 зеленых, 2 синих карандаша. Наудачу без возвращения извлекают 3 карандаша. Найдите вероятность событий: А все извлеченные карандаши разного цвета, В среди извлеченных карандашей в точности 2 одного цвета.
- 4. В прямоугольном броневом щите размерами 2 на 1 метр имеется невидимая для противника амбразура 10 на 10 см. Какова вероятность того, что пуля, случайно попавшая в щит, попадет в амбразуру.
- 5. В среднем 20% пакетов акций на аукционах продаются по первоначально заявленной цене. Найти вероятность того, что из 9 пакетов акций в результате торгов по первоначально заявленной цене: а) не будет продано 5 пакетов; б) 2 пакета. Среди скольких пакетов хотя бы один с вероятностью не менее 0,5 продастся по первоначальной цене.
- 6.1. Всхожесть клубней картофеля равна 90%. Посажено 1000 клубней. Определите вероятность того, взойдет: а) не менее 800, б) ровно 800 клубней. Каковы будут среднее и наиболее вероятное количества взошедших клубней?
- 6.2. На факультете учится 500 студентов. Найдите вероятность того, что первое сентября является днем рождения не более одного студента.

Найдите: а) плотность распределения p(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) $P(1 \le X \le 3)$.

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(-1 \le X < 1)$ для дискретной случайной величины, заданной законом распределения:
- 9. При производстве химических емкостей стандартным считается объем 210мл. P | 0.4 0.3 Случайные ошибки производства подчинены нормальному закону со СКО σ =3мл. Запишите вид функции плотности распределения f(x), схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность производства не превысит 3мл; б)

промежуток, в котором практически наверняка содержатся объемы пробирок; в) вероятность того, что объем пробирки окажется в промежутке от 211мл до 215мл; г) какую абсолютную погрешность производства можно гарантировать с вероятностью не менее 0,95.

10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам семестра получена выборка сведений об оценках за вторую контрольную работу (Х) и их оценок на экзамене (У):

								(' /																		
X	1	0	0	0,8	4,4	0,3	3,9	4,7	0,7	2,5	1,2	1	0,8	2,6	2,9	0,8	0,6	1,9	0,8	0,4	0,9	2,5	1,5	0,1	1,1	4,4
У	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	4	5	4	2	4	4	5

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Причина разрыва электрической цепи служит выход из строя элемента не менее двух элементов из трех. Элементы могут выходить из строя независимо друг от друга с вероятностями, равными соответственно 0.1; 0.2; 0.3. Какова вероятность: а) разрыва электрической цепи, б) отказа только одного элемента, в) отказа хотя бы одного элемента?
- 2. При исследовании жирности молока коров все стадо было разбито на три группы. В первой группе оказалось 70%, во второй -23% и в третьей -7% всех коров. Вероятности того, что молоко, полученное от отдельной коровы, имеет не менее 4% жирности, для каждой группы коров соответственно равны 0,6; 0,35 и 0,1. Определите вероятность того, что выбранная наудачу корова: а) даст молоко для жирностью не менее 4%; б) оказалась из первой группы, если ее молоко имеет жирность не менее 4%.
- 3. В партии из 50 изделий 10 бракованных. Для выборочного контроля отобрано 5 изделий. Какова вероятность того, что среди отобранных: а) бракованными окажутся 2 изделия, б) все окажутся небракованными.
- 4. Телефонная линия, связывающая пункты А и В с расстоянием АВ=3 км порвалась в неизвестном месте. Какова вероятность, что она нарушена дальше 500 м. от каждого из пунктов А и
- 5. Считая вероятности рождений мальчика и девочки одинаковыми, найдите вероятности того, что в среднестатистической семье с пятью детьми: а) два мальчика; б) не менее трех мальчиков. Сколько должно быть детей в семье, чтобы среди них был хотя бы 1 мальчик с вероятностью не менее 0,5.
- 6.1. Вероятность получения отличной оценки на экзамене равна 0,2. Найдите вероятность того, что из 75 студентов «отлично» получили: а) 30, б) не более 20. Каковы среднее и

наивероятнейшее число отличных оценок?

- 6.2. Станок автомат штампует детали. Вероятность того, что деталь окажется бракованной, равна 0,01. Найдите вероятность того, что среди 200 деталей окажется ровно 4 бракованных.
- 7. Непрерывная случайная величина, задана плотностью распределения $P(x) = \begin{cases} 1, x \in \{1, 2\}, \\ 0, & x \not\in \{1, 2\}. \end{cases}$

Найдите: а) функцию распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(-1 < X < 1, 5).

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(-1 \le X < 1)$ для дискретной случайной величины, заданной законом распределения:
- 9. При производстве химических емкостей стандартным считается объем 250мл. Случайные ошибки производства подчинены нормальному закону со СКО σ =3мл. Запишите вид функции плотности распределения f(x), схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность производства не превысит 4мл; б) промежуток, в котором практически наверняка содержатся объемы пробирок; в) вероятность того, что объем пробирки окажется в промежутке от 247мл до 251мл; г) какую абсолютную погрешность производства можно гарантировать с вероятностью не менее 0,95.
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам семестра получена выборка сведений об оценках за первую контрольную работу (X) и их оценок на экзамене (Y).

		1					,																
X	5	1,9	0	2	4	2,3	3,3	2	3,6	2	5	3,1	1	1,9	1,8	1,7	1,1	2,4	3,9	4	3	3,7	4,2
У	5	4	3	3	5	4	4	3	4	4	5	3	2	4	4	3	2	5	5	5	4	5	4

- 1) найдите вид линейной регрессии Y на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятность получить высокие дивиденды по акциям на первом предприятии -0.3, на втором -0.4, на третьем -0.2. Определите вероятность того, что акционер, имеющий акции всех предприятий, получит высокие дивиденды: а) на всех предприятиях; б) хотя бы на одном предприятии, в) только на одном предприятии.
- 2. Перед посевом 90% всех семян было обработано ядохимикатами. Вероятность поражения вредителями для растений из обработанных семян равна 0,08, для растений из необработанных семян 0,4. Какова вероятность того, что взятое наудачу растение: а) оказалось пораженным, б) было обработанным, если оно оказалось пораженным?
- 3. По условию лотереи «Спортлото 5 из 36» участник лотереи, угадавший 3, 4 или 5 видов спорта из отобранных при случайном розыгрыше 5 видов спорта из 36, получает денежный приз. Найдите вероятность того, что будут угаданы: а) все 5 цифр; б) 3 цифры.
- 4. В круг радиуса R вписан квадрат. Найдите вероятность того, что точка, брошенная в круг, случайно окажется в квадрате.
- 5. Установлено, что виноградник поражен вредителями в среднем на 10%. Вычислите вероятность того, что из 10 проверенных кустов винограда: а) один будет поражен, б) поражены не более двух. Сколько требуется проверить кустов, чтобы обнаружить хотя бы 1 пораженный куст с вероятностью не менее 0,5.
 - 6.1. Известно, что 80% специалистов в районе имеет высшее образование. Найдите

вероятность того, что из 100 человек, наудачу отобранных для социологического опроса. высшее образование имеет: а) 70; б) от 65 до 90 человек. Каковы среднее и наивероятнейшее число человек с высшим образованием среди выбранных?

- 6.2. Вероятность невыхода на работу из-за болезни ежедневно равна 0.01 для каждого работника предприятия. Определите вероятность того, что в ближайший день не выйдет на работу хотя бы один из работников. Численность работников -500 человек.

Найдите: а) плотность распределения p(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(0.5 < X < 0.7).

8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте

ее график; б) M[X], D[X], σ [X]; в) моду, г) P(1 \leq X<2) для дискретной случайной величины, заданной законом распределения:

X	0	3	6
P	0,7	0,2	0,1

- 9. Производится расфасовка некоторого вещества. Стандартной считается порция $400\ \Gamma$. Случайные ошибки взвешивания подчинены нормальному закону со СКО $\mathbf{\sigma}=20\ \Gamma$. Запишите вид функции плотности распределения $\mathbf{f}(\mathbf{x})$, схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность взвешивания не превысит $10\ \Gamma$; б) промежуток, в котором практически наверняка содержатся порции вещества; в) вероятность того, что порция вещества окажется в промежутке от $370\ \Gamma$ до $410\ \Gamma$; Γ) какую абсолютную погрешность взвешивания можно гарантировать с вероятностью не менее 0,9.
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам семестра получена выборка сведений об оценках за вторую контрольную работу (X) и их оценок на экзамене (Y):

			,					,																		
X	1	0	0	0,8	4,4	0,3	3,9	4,7	0,7	2,5	1,2	1	0,8	2,6	2,9	0,8	0,6	1,9	0,8	0,4	0,9	2,5	1,5	0,1	1,1	4,4
У	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	4	5	4	2	4	4	5

- 1) найдите вид линейной регрессии Y на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятность попадания в цель первым стрелком равна 0,75, а вторым 0,9. Стрелки выстрелили одновременно. Какова вероятность того, что: а) только один попадет в цель, б) будет не менее одного попадания, в) оба промахнутся?
- 2. Для посева заготовлены семена 3 сортов пшеницы. Причем, 50% всех семян 1-го сорта, 40% 2-го сорта, 10% 3-го сорта. Вероятность того, что из зерна вырастет колос, содержащий не менее 40 зерен, для первого сорта равна 0.6, для второго 0.4, для третьего 0.2. Найдите вероятность того, что наудачу выбранный колос: а) содержит не менее 40 зерен, б) выращен из зерна 2-го сорта, если в колосе оказалось не менее 40 зерен.
- 3. В клетке содержится 18 кур, из них 6 не вакцинированы. Из клетки наудачу выбрано 3 птицы. Какова вероятность того, что: а) все выбранные куры вакцинированы, б) хотя бы одна не вакцинирована?
- 4. Газопровод длиной 30 км, связывающий пункты Анск и Бенск, повредился в неизвестном месте. Какова вероятность, что она повреждение не далее 5 км от одного из пунктов?

- 5. 90% изделий предприятия изделия высшего сорта. Некто приобрел 8 изделий этого предприятия. Чему равна вероятность того, что: а) 4 из них высшего сорта; б) не менее 4 высшего сорта. Сколько требуется купить изделий, чтобы с вероятностью не менее 0,8 среди них было хотя бы одно изделие высшего сорта?
- 6.1. В автопарке 400 автомобилей. Вероятность ежедневной безотказной работы каждого из них равна 0,9. Найдите вероятность того, что за день сломается: а) 10 автомобилей; б) не более 50 автомобилей. Каковы среднее и наиболее вероятное число безотказно проработавших за день автомобилей?
- 6.2. В пчелиной семье 5000 пчел. Вероятность заболевания в течение дня равна 0,001 для каждой пчелы. Найдите вероятность того, что в течение дня заболеет хотя бы одна пчела.
- 7. Непрерывная случайная величина, задана плотностью распределения $P(x) = \begin{cases} 0.5, x \in (1, 3], \\ 0, x \notin (1, 3]. \end{cases}$

Найдите: а) функцию распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(0 < X < 1,5).

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(20^{\leq}X<21)$ для дискретной случайной величины, заданной законом распределения:
 - 9. Производится расфасовка некоторого вещества. Стандартной считается порция

30

40

- $600\ \Gamma$. Случайные ошибки взвешивания подчинены нормальному закону со СКО $\mathbf{\sigma}=30\ \Gamma$. Запишите вид функции плотности распределения $\mathbf{f}(\mathbf{x})$, схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность взвешивания не превысит $40\ \Gamma$; б) промежуток, в котором практически наверняка содержатся порции вещества; в) вероятность того, что порция вещества окажется в промежутке от $570\ \Gamma$ до $610\ \Gamma$; г) какую абсолютную погрешность взвешивания можно гарантировать с вероятностью не менее 0,9.
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 1 семестра получена выборка сведений о числе положительных ответов у доски (X) и их экзаменационных оценок (Y).

X	1	0	4	6	6	2	4	3	3	4	7	4	4	5	4	7	1	3	4	5	6	3	2	1	5	4	2
Y	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	4	5	4	2	4	4	5	3

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятность попадания в цель первым стрелком равна 0,9, а вторым 0,8. Стрелки выстрелили одновременно. Какова вероятность того, что: а) только один попадет в цель, б) будет не менее одного попадания, в) оба промахнутся?
- 2. На складе продукция 3-х фабрик. Продукция I фабрики составляет 30%, II 40%, III 30%. Средний процент нестандартных изделий для I фабрики равен 5%, для II 4%, для III 2%. Найдите вероятность того, что наугад взятое изделие: а) окажется стандартным; б) изготовлено на II фабрике, если оно стандартно.
- 3. Среди 25 студентов группы, в которой 15 девушек, разыгрываются 5 билетов на концерт. Вычислите вероятность того, что среди обладателей билетов окажутся: а) три девушки, б) только девушки.
 - 4. На отрезок длиной 20 см наудачу поставлены 2 точки. Какова вероятность того, что

расстояние между этими точками более 15 см?

- 5. В среднем 20% пакетов акций на аукционах продаются по первоначально заявленной цене. Найти вероятность того, что из 10 пакетов акций в результате торгов по первоначально заявленной цене: а) не будет продано 5 пакетов; б) 3 пакета. Среди скольких пакетов хотя бы один с вероятностью не менее 0,5 продастся по первоначальной цене.
- 6.1. Вероятность того, что зашедший в ресторан посетитель сделает заказ, равна 0,8. Определите вероятность того, что из 100 зашедших сделают заказ: а) не менее 75, б) ровно 50 Каковы будут среднее и наиболее вероятное количества сделавших заказ посетителей?
- 6.2. На факультете учится 400 студентов. Найдите вероятность того, что первое января является днем рождения только одного студента.
- 7. Непрерывная случайная величина, задана функцией распределения (x, 0) Найдите: а) плотность распределения (x, 0) постройте графики функций (x, 0) по(x, 0)
- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(-1 \le X < 1)$ для дискретной случайной величины, заданной законом распределения:

4

P 0,1 0,3 0,6

9. При производстве химических емкостей стандартным считается объем 400мл.

Случайные ошибки производства подчинены нормальному закону со СКО σ =4мл. Запишите вид функции плотности распределения f(x), схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность производства не превысит 2мл; б) промежуток, в котором практически наверняка содержатся объемы пробирок; в) вероятность того, что объем пробирки окажется в промежутке от 397мл до 401мл; г) какую абсолютную погрешность производства можно гарантировать с вероятностью не менее 0,95.

10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 1 семестра получена выборка сведений о числе положительных ответов у доски (X) и их экзаменационных оценок (Y).

X	4	6	2	5	4	3	5	2	3	2	5	6	2	4	5	3	2	4	6	5	5	5	5	6	2	3
Y	5	4	3	3	5	4	4	3	4	4	5	3	2	4	4		2	5	5	5	4	5	4	4	3	4

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

- 1. Вероятность получить плановую прибыль по акциям на первого пакета -0.6, второго -0.55, третьего -0.75. Определите вероятность того, что биржевой игрок получит плановую прибыль: а) по всем трем пакетам; б) хотя бы по одному пакету, в) только по двум пакетам.
- 2. Некто заблудился в лесу и вышел на поляну. От поляны есть 3 дороги. Вероятности выхода из леса за 1 час для дорог соответственно равны: 0,6; 0,3; 0,1. Чему равны вероятности того, что, выбирая дорогу наугад: а) заблудившийся вышел из леса за 1 час; б) заблудившийся пошел по первой дороге, если известно, что он вышел из леса за 1 час.
- 3. Из колоды в 52 карты наугад выбраны 3 карты. Какова вероятность того, что среди них окажется: а) ровно 2 короля, б) только тузы?
- 4. В прямоугольном броневом щите размерами 1 на 1 метр имеется невидимая для противника амбразура 20 на 20 см. Какова вероятность того, что пуля, случайно попавшая в щит, попадет в амбразуру?

- 5. На 200 лотерейных билетов приходится 10 выигрышных. Приобретено 8 билетов. Какова вероятность выигрыша: а) хотя бы по одному билету, б) по 3 билетам? Сколько требуется купить билетов, чтобы с вероятностью не менее 0,8 среди них был хотя бы один выигрышный?
- 6.1. Вероятность получения отличной оценки на экзамене равна 0,2. Найдите вероятность того, что из 75 студентов «отлично» получили: а) 00, б) не более 30. Каковы среднее и наивероятнейшее число отличных оценок?
- 6.2. Вероятность невыхода на работу из-за болезни ежедневно равна 0,01 для каждого работника предприятия. Определите вероятность того, что в ближайший день не выйдет на работу хотя бы один из работников. Численность работников – 100 человек.
- 7. Непрерывная случайная величина, задана плотностью распределения $p(x) = \begin{cases} 1 - x/2, x \in (0, 2], \\ 0, x \notin (0, 2]. \end{cases}$

Найдите: а) функцию распределения F(x), б) постройте графики функций F(x) и p(x); в) M[X], D[X], $\sigma[X]$; г) моду, медиану; д) P(1 < X < 1,5).

- 8. Изобразите полигон распределения, найдите: а) функцию распределения F(x) и постройте ее график; б) M[X], D[X], $\sigma[X]$; в) моду, г) $P(-1 \le X < 1)$ для дискретной случайной величины, заданной законом распределения:
- P 0.5 0.3 0.2 9. Производится расфасовка некоторого вещества. Стандартной считается порция

10

- 400 г. Случайные ошибки взвешивания подчинены нормальному закону со СКО $\sigma = 20$ г. Запишите вид функции плотности распределения f(x), схематично постройте ее график. Найдите: а) вероятность того, что абсолютная погрешность взвешивания не превысит 10 г; б) промежуток, в котором практически наверняка содержатся порции вещества; в) вероятность того, что порция вещества окажется в промежутке от 370 г до 410 г; г) какую абсолютную погрешность взвешивания можно гарантировать с вероятностью не менее 0,9.
- 10. Проводится исследование зависимости успеваемости студентов от текущей работы. По результатам 1 семестра получена выборка сведений о числе положительных ответов у доски (X) и их экзаменационных оценок (У).

			- 1			7		` '																				
	X	1	0	4	6	6	2	4	3	3	4	7	4	4	5	4	7	1	3	4	5	6	3	2	1	5	4	2
1	Y	2	3	3	4	5	4	5	5	4	4	4	3	5	3	4	4	3	4	4	4	5	4	2	4	4	5	3

- 1) найдите вид линейной регрессии У на X, схематично постройте прямую регрессии, оценить тесноту связи,
- 2) для признака Y: а) постройте вариационный ряд, ряд частот и ряд относительных частот; б) найдите эмпирическую функцию распределения и постройте её график; в) вычислите числовые характеристики вариационного ряда: среднее, дисперсию, СКО, коэффициент вариации.

Критерии оценки:

Оценка	Критерии
зачтено	Выставляется обучающемуся, если точно определив проблему содержание и
	составляющие. Обучающийся знает и владеет навыком самостоятельной
	исследовательской работы по теме исследования; методами и приемами анализа
	теоретических и/или практических аспектов изучаемой области. Фактических
	ошибок, связанных с пониманием проблемы, нет; графически работа оформлена
	правильно.
зачтено	Выставляется обучающемуся если работа характеризуется смысловой
	цельностью, связностью и последовательностью изложения; допущено не более
	1 ошибки при объяснении смысла или содержания проблемы. Для аргументации
	приводятся данные отечественных и зарубежных авторов. Продемонстрированы
	исследовательские умения и навыки. Фактических ошибок, связанных с
	пониманием проблемы, нет. Допущены отдельные ошибки в оформлении

	работы.
зачтено	Выставляется обучающемуся если в работе студент проводит достаточно
	самостоятельный анализ основных этапов и смысловых составляющих
	проблемы; понимает базовые основы и теоретическое обоснование выбранной
	темы. Привлечены основные источники по рассматриваемой теме. Допущено не
	более 2 ошибок в содержании проблемы, оформлении работы.
не зачтено	Выставляется обучающемуся если работа представляет собой пересказанный
	или полностью заимствованный исходный текст без каких бы то ни было
	комментариев, анализа. Не раскрыта структура и теоретическая составляющая
	темы. Допущено три или более трех ошибок в содержании раскрываемой
	проблемы, в оформлении работы.